
James M Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3065132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470, 105-109.	27.8	1,594
2	Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516, 400-404.	27.8	792
3	Vertebrate Endoderm Development and Organ Formation. Annual Review of Cell and Developmental Biology, 2009, 25, 221-251.	9.4	664
4	In vitro generation of human pluripotent stem cell derived lung organoids. ELife, 2015, 4, .	6.0	605
5	An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 2014, 20, 1310-1314.	30.7	490
6	Vertebrate Endoderm Development. Annual Review of Cell and Developmental Biology, 1999, 15, 393-410.	9.4	473
7	Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nature Medicine, 2017, 23, 49-59.	30.7	465
8	Generating human intestinal tissue from pluripotent stem cells in vitro. Nature Protocols, 2011, 6, 1920-1928.	12.0	365
9	Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metabolism, 2019, 30, 374-384.e6.	16.2	303
10	Sox17 and Sox4 Differentially Regulate β-Catenin/T-Cell Factor Activity and Proliferation of Colon Carcinoma Cells. Molecular and Cellular Biology, 2007, 27, 7802-7815.	2.3	283
11	Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development (Cambridge), 2005, 132, 35-47.	2.5	265
12	Sox17 Regulates Organ Lineage Segregation of Ventral Foregut Progenitor Cells. Developmental Cell, 2009, 17, 62-74.	7.0	265
13	Organoids by design. Science, 2019, 364, 956-959.	12.6	244
14	Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development (Cambridge), 2017, 144, 958-962.	2.5	230
15	Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development (Cambridge), 2004, 131, 165-179.	2.5	211
16	Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature, 2019, 574, 112-116.	27.8	199
17	Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell, 2017, 21, 51-64.e6.	11.1	198
18	Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature, 2017, 541, 182-187.	27.8	176

#	Article	IF	CITATIONS
19	FGF signaling is necessary for establishing gut tube domains alongthe anterior–posterior axis in vivo. Mechanisms of Development, 2006, 123, 42-55.	1.7	162
20	How to make an intestine. Development (Cambridge), 2014, 141, 752-760.	2.5	156
21	Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Developmental Biology, 2007, 7, 4.	2.1	146
22	Generation of mice with a conditional null allele for <i>Wntless</i> . Genesis, 2010, 48, 554-558.	1.6	146
23	Molecular Basis of Vertebrate Endoderm Development. International Review of Cytology, 2007, 259, 49-111.	6.2	131
24	Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature, 2018, 557, 322-328.	27.8	129
25	Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nature Communications, 2020, 11, 4158.	12.8	129
26	Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification. Cell Stem Cell, 2018, 23, 501-515.e7.	11.1	121
27	Identification and Manipulation of Biliary Metaplasia in Pancreatic Tumors. Gastroenterology, 2014, 146, 233-244.e5.	1.3	118
28	Increased Programmed Death-Ligand 1 is an Early Epithelial Cell Response to Helicobacter pylori Infection. PLoS Pathogens, 2019, 15, e1007468.	4.7	116
29	A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification. Cell Reports, 2016, 16, 66-78.	6.4	111
30	Paracrine signals regulate human liver organoid maturation from iPSC. Development (Cambridge), 2017, 144, 1056-1064.	2.5	104
31	Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium. Stem Cell Reports, 2016, 7, 110-125.	4.8	101
32	The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas. Diabetes, 2015, 64, 2497-2505.	0.6	100
33	Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO Journal, 2015, 34, 1149-1163.	7.8	86
34	Sox17 promotes tumor angiogenesis and destabilizes tumor vessels in mice. Journal of Clinical Investigation, 2013, 123, 418-431.	8.2	84
35	Mechanically induced development and maturation of human intestinal organoids in vivo. Nature Biomedical Engineering, 2018, 2, 429-442.	22.5	79
36	Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab on A Chip, 2018, 18, 3079-3085.	6.0	76

#	Article	IF	CITATIONS
37	Sox17 influences the differentiation of respiratory epithelial cells. Developmental Biology, 2006, 294, 192-202.	2.0	73
38	Arx is required for normal enteroendocrine cell development in mice and humans. Developmental Biology, 2012, 365, 175-188.	2.0	66
39	Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nature Protocols, 2019, 14, 28-50.	12.0	59
40	Translational embryology: Using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Developmental Dynamics, 2007, 236, 3218-3227.	1.8	57
41	Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell, 2022, 29, 36-51.e6.	11.1	57
42	A process engineering approach to increase organoid yield. Development (Cambridge), 2017, 144, 1128-1136.	2.5	51
43	Sox17 Promotes Cell Cycle Progression and Inhibits TGF-β/Smad3 Signaling to Initiate Progenitor Cell Behavior in the Respiratory Epithelium. PLoS ONE, 2009, 4, e5711.	2.5	51
44	Converting human pluripotent stem cells into β-cells: recent advances and future challenges. Current Opinion in Organ Transplantation, 2010, 15, 54-60.	1.6	49
45	Molecular pathways controlling pancreas induction. Seminars in Cell and Developmental Biology, 2012, 23, 656-662.	5.0	47
46	Identification of molecular markers that are expressed in discrete anterior–posterior domains of the endoderm from the gastrula stage to mid-gestation. Developmental Dynamics, 2007, 236, 1997-2003.	1.8	45
47	Generation of β cells from human pluripotent stem cells: Are we there yet?. Annals of the New York Academy of Sciences, 2014, 1311, 124-137.	3.8	45
48	Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis. Developmental Biology, 2018, 434, 121-132.	2.0	45
49	Organoid Center Strategies for Accelerating Clinical Translation. Cell Stem Cell, 2018, 22, 806-809.	11.1	43
50	Mechanisms of embryonic stomach development. Seminars in Cell and Developmental Biology, 2017, 66, 36-42.	5.0	42
51	Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2017, 1597, 167-177.	0.9	41
52	Endosome-Mediated Epithelial Remodeling Downstream of Hedgehog-Gli Is Required for Tracheoesophageal Separation. Developmental Cell, 2019, 51, 665-674.e6.	7.0	41
53	Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development (Cambridge), 2017, 144, 2402-2414.	2.5	40
54	A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development. Developmental Cell, 2019, 50, 367-380.e7.	7.0	35

#	Article	IF	CITATIONS
55	Generating intestinal tissue from stem cells: potential for research and therapy. Regenerative Medicine, 2011, 6, 743-755.	1.7	34
56	Deriving functional human enteroendocrine cells from pluripotent stem cells. Development (Cambridge), 2018, 145, .	2.5	34
57	Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma. Metabolites, 2019, 9, 157.	2.9	32
58	Activation of Hedgehog Signaling Promotes Development of Mouse and Human Enteric Neural Crest Cells, Based on Single-Cell Transcriptome Analyses. Gastroenterology, 2019, 157, 1556-1571.e5.	1.3	31
59	Overcoming Pluripotent Stem Cell Dependence on the Repair of Endogenous DNA Damage. Stem Cell Reports, 2016, 6, 44-54.	4.8	29
60	Enteroendocrine cells couple nutrient sensing to nutrient absorption by regulating ion transport. Nature Communications, 2020, 11, 4791.	12.8	27
61	Genes expressed in the developing endocrine pancreas and their importance for stem cell and diabetes research. Diabetes/Metabolism Research and Reviews, 2003, 19, 191-201.	4.0	26
62	Tissue Responses to Shiga Toxin in Human Intestinal Organoids. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 171-190.	4.5	26
63	High-Risk Human Papillomavirus E6 Protein Promotes Reprogramming of Fanconi Anemia Patient Cells through Repression of p53 but Does Not Allow for Sustained Growth of Induced Pluripotent Stem Cells. Journal of Virology, 2014, 88, 11315-11326.	3.4	25
64	Noncoding deletions reveal a gene that is critical for intestinal function. Nature, 2019, 571, 107-111.	27.8	24
65	Ontogeny and function of the circadian clock in intestinal organoids. EMBO Journal, 2022, 41, e106973.	7.8	24
66	Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse β Cell. PLoS ONE, 2014, 9, e104675.	2.5	23
67	Translating Developmental Principles to Generate Human GastricÂOrganoids. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 353-363.	4.5	21
68	Developmental basis of trachea-esophageal birth defects. Developmental Biology, 2021, 477, 85-97.	2.0	21
69	Building additional complexity to in vitro-derived intestinal tissues. Stem Cell Research and Therapy, 2013, 4, S1.	5.5	20
70	Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control <i>Clostridium difficile</i> colitis. Life Science Alliance, 2019, 2, e201900296.	2.8	20
71	Gastrointestinal organoids: a next-generation tool for modeling human development. American Journal of Physiology - Renal Physiology, 2020, 319, G375-G381.	3.4	18
72	Disruption of a Hedgehog-Foxf1-Rspo2 signaling axis leads to tracheomalacia and a loss of Sox9+ tracheal chondrocytes. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	16

#	Article	IF	CITATIONS
73	Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells. Journal of Allergy and Clinical Immunology, 2015, 135, 236-244.	2.9	15
74	Recent advances in deriving human endodermal tissues from pluripotent stem cells. Current Opinion in Cell Biology, 2019, 61, 92-100.	5.4	14
75	Evaluation of transplantation sites for human intestinal organoids. PLoS ONE, 2020, 15, e0237885.	2.5	12
76	Eicosatetraynoic Acid and Butyrate Regulate Human Intestinal Organoid Mitochondrial and Extracellular Matrix Pathways Implicated in Crohn's Disease Strictures. Inflammatory Bowel Diseases, 2022, 28, 988-1003.	1.9	12
77	SnapShot: GI Tract Development. Cell, 2015, 161, 176-176.e1.	28.9	11
78	Generation of esophageal organoids and organotypic raft cultures from human pluripotent stem cells. Methods in Cell Biology, 2020, 159, 1-22.	1.1	11
79	Personalized Assessment of Normal Tissue Radiosensitivity via Transcriptome Response to Photon, Proton and Carbon Irradiation in Patient-Derived Human Intestinal Organoids. Cancers, 2020, 12, 469.	3.7	9
80	Engineering-inspired approaches to study \hat{l}^2 -cell function and diabetes. Stem Cells, 2021, 39, 522-535.	3.2	5
81	Regional identity of gut stem cells—one gene to rule them all. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 125-126.	17.8	4
82	Enteroendocrine cell differentiation and function in the intestine. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 169-176.	2.3	4
83	Generating and regenerating the digestive system. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 65-66.	17.8	3
84	A Window into Your Gut: Biologically Inspired Engineering of Mini-gut Tubes InÂVitro. Developmental Cell, 2020, 55, 522-524.	7.0	3
85	Case Report: Esophageal Bronchus in a Neonate, With Image, Histological, and Molecular Analysis. Frontiers in Pediatrics, 2021, 9, 707822.	1.9	3
86	Sweet Relief: Reprogramming Gastric Endocrine Cells to Make Insulin. Cell Stem Cell, 2016, 18, 295-297.	11.1	2
87	Stem Cells and Organoids to Study Epithelial Cell Biology in IBD. , 2017, , 167-172.		1
88	Generation of Gastrointestinal Organoids Derived from Human Pluripotent Stem Cells. , 2017, , 179-192.		1
89	Models of Pluripotent and Somatic Stem Cells to Study Tissue-Specific Sensitivities in Fanconi Anemia. Blood, 2015, 126, 168-168.	1.4	1
90	Patterning the Embryonic Endoderm into Presumptive Organ Domains. , 2015, , 545-564.		0

#	Article	IF	CITATIONS
91	Inducible Loss of the Fanconi Anemia Pathway in iPSC Causes Rapid Cell Cycle Arrest and Apoptosis through ATM/ATR and p53 Signaling. Blood, 2014, 124, 3528-3528.	1.4	Ο
92	Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Journal of Cell Science, 2017, 130, e1.1-e1.1.	2.0	0
93	Generation of Esophageal Organoids from Human Pluripotent Stem Cells and Their Use to Study Human Development. SSRN Electronic Journal, 0, , .	0.4	0
94	Expression of Circadian Clock Components PER2 and BMAL1 are Altered During Infection of Helicobacter pylori. FASEB Journal, 2019, 33, 869.29.	0.5	0
95	Discovering the Developmental Basis of Tracheaâ€Esophageal Birth Defects: Evidence for Endosomeâ€opathies. FASEB Journal, 2022, 36, .	0.5	0