List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3064882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selectivity in Propene Polymerization with Metallocene Catalysts. Chemical Reviews, 2000, 100, 1253-1346.	23.0	1,313
2	Samb <i>V</i> ca: A Web Application for the Calculation of the Buried Volume of Nâ€Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2009, 2009, 1759-1766.	1.0	717
3	Towards the online computer-aided design of catalytic pockets. Nature Chemistry, 2019, 11, 872-879.	6.6	710
4	SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps. Organometallics, 2016, 35, 2286-2293.	1.1	658
5	Understanding the M(NHC) (NHC=N-heterocyclic carbene) bond. Coordination Chemistry Reviews, 2009, 253, 687-703.	9.5	651
6	Steric and Electronic Properties of N-Heterocyclic Carbenes (NHC):Â A Detailed Study on Their Interaction with Ni(CO)4. Journal of the American Chemical Society, 2005, 127, 2485-2495.	6.6	591
7	Determination of N-Heterocyclic Carbene (NHC) Steric and Electronic Parameters using the [(NHC)Ir(CO) ₂ Cl] System. Organometallics, 2008, 27, 202-210.	1.1	541
8	Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals. Journal of Organometallic Chemistry, 2005, 690, 5407-5413.	0.8	431
9	A Highly Selective Copper–Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO ₂ to CO. Angewandte Chemie - International Edition, 2015, 54, 2146-2150.	7.2	403
10	Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. Journal of Chemical Physics, 2018, 148, 011101.	1.2	402
11	A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) Moiety:  Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands. Organometallics, 2003, 22, 4322-4326.	1.1	400
12	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	16.1	390
13	Cu–Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO ₂ to CO. ACS Catalysis, 2016, 6, 2842-2851.	5.5	380
14	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019, 4, 1687-1709.	8.8	375
15	Aqueous Zinc-Ion Storage in MoS ₂ by Tuning the Intercalation Energy. Nano Letters, 2019, 19, 3199-3206.	4.5	362
16	(NHC)Copper(I)-Catalyzed [3+2] Cycloaddition of Azides and Mono- or Disubstituted Alkynes. Chemistry - A European Journal, 2006, 12, 7558-7564.	1.7	343
17	The Role of Bulky Substituents in Brookhart-Type Ni(II) Diimine Catalyzed Olefin Polymerization:Â A Combined Density Functional Theory and Molecular Mechanics Study. Journal of the American Chemical Society, 1997, 119, 6177-6186.	6.6	334
18	Synthetic and Structural Studies of (NHC)Pd(allyl)Cl Complexes (NHC =N-heterocyclic carbene). Organometallics, 2004, 23, 1629-1635.	1,1	296

#	Article	IF	CITATIONS
19	Interaction of a BulkyN-Heterocyclic Carbene Ligand with Rh(I) and Ir(I). Double Câ^'H Activation and Isolation of Bare 14-Electron Rh(III) and Ir(III) Complexes. Journal of the American Chemical Society, 2005, 127, 3516-3526.	6.6	285
20	Golden Carousel in Catalysis: The Cationic Gold/Propargylic Ester Cycle. Angewandte Chemie - International Edition, 2008, 47, 718-721.	7.2	265
21	MoS ₂ Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. ACS Energy Letters, 2019, 4, 430-435.	8.8	261
22	COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics, 2011, 27, 2915-2916.	1.8	253
23	Mechanism of Ruthenium-Catalyzed Olefin Metathesis Reactions from a Theoretical Perspective. Journal of the American Chemical Society, 2002, 124, 8965-8973.	6.6	250
24	What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes?. Chemical Science, 2015, 6, 1895-1904.	3.7	244
25	Do New Century Catalysts Unravel the Mechanism of Stereocontrol of Old Zieglerâ^'Natta Catalysts?. Accounts of Chemical Research, 2004, 37, 231-241.	7.6	232
26	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries. ACS Energy Letters, 2018, 3, 2899-2907.	8.8	224
27	The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nature Chemistry, 2017, 9, 890-895.	6.6	222
28	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	8.8	217
29	Thermodynamics of N-Heterocyclic Carbene Dimerization: The Balance of Sterics and Electronics. Organometallics, 2008, 27, 2679-2681.	1.1	213
30	POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Research, 2003, 31, 3364-3366.	6.5	212
31	Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Letters, 2018, 3, 1219-1224.	8.8	204
32	The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews, 2020, 120, 734-813.	23.0	201
33	Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Transactions, 2012, 41, 9119.	1.6	191
34	π-Acidity and π-basicity of N-heterocyclic carbene ligands. A computational assessment. Journal of Organometallic Chemistry, 2006, 691, 4350-4358.	0.8	184
35	Comparing the Enantioselective Power of Steric and Electrostatic Effects in Transitionâ€Metalâ€Catalyzed Asymmetric Synthesis. Chemistry - A European Journal, 2010, 16, 14348-14353. 	1.7	182
36	Electronic Properties of N-Heterocyclic Carbene (NHC) Ligands:  Synthetic, Structural, and Spectroscopic Studies of (NHC)Platinum(II) Complexes. Organometallics, 2007, 26, 5880-5889.	1.1	181

#	Article	IF	CITATIONS
37	Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nature Materials, 2020, 19, 1346-1353.	13.3	181
38	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	8.8	175
39	Shape and Volume of Cavities in Thermoplastic Molecular Sieves Based on Syndiotactic Polystyrene. Chemistry of Materials, 2001, 13, 1506-1511.	3.2	174
40	Feasibility of N ₂ Binding and Reduction to Ammonia on Feâ€Deposited MoS ₂ 2D Sheets: A DFT Study. Chemistry - A European Journal, 2017, 23, 8275-8279.	1.7	173
41	[Pd(IPr*)(cinnamyl)Cl]: An Efficient Preâ€catalyst for the Preparation of Tetraâ€ <i>ortho</i> â€substituted Biaryls by Suzuki–Miyaura Crossâ€Coupling. Chemistry - A European Journal, 2012, 18, 4517-4521.	1.7	164
42	Flexibility of N-Heterocyclic Carbene Ligands in Ruthenium Complexes Relevant to Olefin Metathesis and Their Impact in the First Coordination Sphere of the Metal. Journal of the American Chemical Society, 2010, 132, 4249-4258.	6.6	162
43	A Siteâ€Selective Doping Strategy of Carbon Anodes with Remarkable Kâ€Ion Storage Capacity. Angewandte Chemie - International Edition, 2020, 59, 4448-4455.	7.2	162
44	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	8.8	160
45	Ascorbic Acid as a Bifunctional Hydrogen Bond Donor for the Synthesis of Cyclic Carbonates from CO ₂ under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 6392-6397.	3.2	156
46	A possible model for the stereospecificity in the syndiospecific polymerization of propene with group 4a metallocenes. Macromolecules, 1991, 24, 1784-1790.	2.2	154
47	Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp ²)–C(sp ³) Cross-Couplings. Journal of the American Chemical Society, 2018, 140, 3724-3735.	6.6	154
48	Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zincâ€lon Batteries. Advanced Materials, 2021, 33, e2103617.	11.1	151
49	Prediction of homoprotein and heteroprotein complexes by protein docking and templateâ€based modeling: A CASPâ€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2016, 84, 323-348.	1.5	148
50	Hydrogenation of CO ₂ â€Derived Carbonates and Polycarbonates to Methanol and Diols by Metal–Ligand Cooperative Manganese Catalysis. Angewandte Chemie - International Edition, 2018, 57, 13439-13443.	7.2	147
51	Implementation of the IMOMM methodology for performing combined QM/MM molecular dynamics simulations and frequency calculations. Theoretical Chemistry Accounts, 1998, 100, 307-313.	0.5	145
52	Key Elements in the Structure and Function Relationship of the MgCl ₂ /TiCl ₄ /Lewis Base Zieglerâ^Natta Catalytic System. Macromolecules, 2007, 40, 9181-9189.	2.2	145
53	Selective Reduction of CO ₂ to CH ₄ by Tandem Hydrosilylation with Mixed Al/B Catalysts. Journal of the American Chemical Society, 2016, 138, 5321-5333.	6.6	140
54	Energy‣fficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem, 2018, 11, 3416-3422.	3.6	140

#	Article	IF	CITATIONS
55	Mechanistic Features of Isomerizing Alkoxycarbonylation of Methyl Oleate. Journal of the American Chemical Society, 2012, 134, 17696-17703.	6.6	137
56	Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 766-776.	8.8	134
57	The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society, 2016, 138, 14326-14337.	6.6	132
58	Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chemical Science, 2019, 10, 4430-4435.	3.7	131
59	The Elusive Mechanism of Olefin Metathesis Promoted by (NHC)Ru-Based Catalysts:Â A Trade between Steric, Electronic, and Solvent Effects. Journal of the American Chemical Society, 2006, 128, 13352-13353.	6.6	129
60	Gold―and Platinumâ€Catalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 3243-3260.	1.7	129
61	Geometry and Stability of Titanium Chloride Species Adsorbed on the (100) and (110) Cuts of the MgCl2Support of the Heterogeneous Zieglerâ`'Natta Catalysts. Macromolecules, 2000, 33, 8953-8962.	2.2	127
62	Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production. Journal of the American Chemical Society, 2015, 137, 7728-7739.	6.6	123
63	A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nature Catalysis, 2019, 2, 678-687.	16.1	123
64	Interfacial Model Deciphering Highâ€Voltage Electrolytes for High Energy Density, High Safety, and Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2102964.	11.1	122
65	Synthesis of 3â€Fluoroâ€3â€aryl Oxindoles: Direct Enantioselective αâ€Arylation of Amides. Angewandte Cher - International Edition, 2012, 51, 2870-2873.	nie 7.2	121
66	Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Progress in Polymer Science, 2018, 84, 89-114.	11.8	120
67	Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters, 2019, 4, 1584-1593.	8.8	117
68	Thermoplastic Molecular Sieves. Chemistry of Materials, 2000, 12, 363-368.	3.2	116
69	Origin of Enantioselectivity in the Asymmetric Ru-Catalyzed Metathesis of Olefins. Journal of the American Chemical Society, 2004, 126, 9592-9600.	6.6	116
70	Selectivity Switch in the Synthesis of Vinylgold(I) Intermediates. Organometallics, 2011, 30, 6328-6337.	1.1	116
71	Bifunctional (Cyclopentadienone)Iron–Tricarbonyl Complexes: Synthesis, Computational Studies and Application in Reductive Amination. Chemistry - A European Journal, 2013, 19, 17881-17890.	1.7	115
72	A Comprehensive Mechanistic Picture of the Isomerizing Alkoxycarbonylation of Plant Oils. Journal of the American Chemical Society, 2014, 136, 16871-16881.	6.6	114

#	Article	IF	CITATIONS
73	[{Au(IPr)} ₂ (μâ€OH)]X Complexes: Synthetic, Structural and Catalytic Studies. Chemistry - A European Journal, 2011, 17, 1238-1246.	1.7	111
74	Mechanisms of Propagation and Termination Reactions in Classical Heterogeneous Zieglerâ^'Natta Catalytic Systems:A A Nonlocal Density Functional Study. Journal of the American Chemical Society, 1998, 120, 2428-2436.	6.6	109
75	Identification and Characterization of a New Family of Catalytically Highly Active Imidazolin-2-ylidenes. Journal of the American Chemical Society, 2008, 130, 6848-6858.	6.6	105
76	Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment. Advanced Energy Materials, 2017, 7, 1701536.	10.2	104
77	Enantioselectivity in the Regioirregular Placements and Regiospecificity in the Isospecific Polymerization of Propene with Homogeneous Ziegler-Natta Catalysts. Journal of the American Chemical Society, 1994, 116, 2988-2995.	6.6	103
78	[OSSO]-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS Catalysis, 2018, 8, 6882-6893.	5.5	103
79	Oxidative Addition to Palladium(0) Made Easy through Photoexcitedâ€5tate Metal Catalysis: Experiment and Computation. Angewandte Chemie - International Edition, 2019, 58, 3412-3416.	7.2	103
80	Relationship between Regiospecificity and Type of Stereospecificity in Propene Polymerization with Zirconocene-Based Catalysts1. Journal of the American Chemical Society, 1997, 119, 4394-4403.	6.6	102
81	Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. ACS Nano, 2017, 11, 9215-9222.	7.3	102
82	Mechanistic Insights on Acrylate Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 4418-4426.	6.6	101
83	High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. Science Advances, 2020, 6, eabc0495.	4.7	101
84	Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 2022, 13, .	5.8	101
85	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	7.3	100
86	Generation of Cu–In alloy surfaces from CuInO ₂ as selective catalytic sites for CO ₂ electroreduction. Journal of Materials Chemistry A, 2015, 3, 19085-19092.	5.2	99
87	Blind prediction of homo―and heteroâ€protein complexes: The CASP13â€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1200-1221.	1.5	99
88	Unraveling the New Role of an Ethylene Carbonate Solvation Shell in Rechargeable Metal Ion Batteries. ACS Energy Letters, 2021, 6, 69-78.	8.8	99
89	A Possible Mechanism for Enantioselectivity in the Chiral Epoxidation of Olefins with [Mn(salen)] Catalysts. Chemistry - A European Journal, 2001, 7, 800-807.	1.7	98
90	Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt ₂ Ag ₂₃ Cl ₇ (PPh ₃) ₁₀] Nanoclusters. Journal of the American Chemical Society, 2017, 139, 1053-1056.	6.6	98

#	Article	IF	CITATIONS
91	Site Chirality as a Messenger in Chain-End Stereocontrolled Propene Polymerization. Journal of the American Chemical Society, 2002, 124, 13368-13369.	6.6	96
92	The Isolation of [Pd{OC(O)H}(H)(NHC)(PR ₃)] (NHC = N-Heterocyclic Carbene) and Its Role in Alkene and Alkyne Reductions Using Formic Acid. Journal of the American Chemical Society, 2013, 135, 4588-4591.	6.6	96
93	The Activation Mechanism of Ru–Indenylidene Complexes in Olefin Metathesis. Journal of the American Chemical Society, 2013, 135, 7073-7079.	6.6	96
94	Toward a Unified Model Explaining Heterogeneous Ziegler–Natta Catalysis. ACS Catalysis, 2015, 5, 5431-5435.	5.5	96
95	Electrolyteâ€Mediated Stabilization of Highâ€Capacity Microâ€Sized Antimony Anodes for Potassiumâ€ŀon Batteries. Advanced Materials, 2021, 33, e2005993.	11.1	96
96	Blue-Emitting Dinuclear N-heterocyclic Dicarbene Gold(I) Complex Featuring a Nearly Unit Quantum Yield. Inorganic Chemistry, 2012, 51, 1778-1784.	1.9	95
97	Preferred Orientation of TiN Coatings Enables Stable Zinc Anodes. ACS Energy Letters, 2022, 7, 197-203.	8.8	95
98	Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Nucleic Acids Research, 2002, 30, 2950-2960.	6.5	94
99	Magnesium atalyzed Hydroboration of Terminal and Internal Alkynes. Angewandte Chemie - International Edition, 2019, 58, 7025-7029.	7.2	94
100	Back-Skip of the Growing Chain at Model Complexes for the Metallocene Polymerization Catalysis. Macromolecules, 1996, 29, 4834-4845.	2.2	91
101	Moving up and down the Titanium Oxidation State in Zieglerâ^'Natta Catalysis. Macromolecules, 2011, 44, 778-783.	2.2	91
102	Organocatalytic Conjugate-Addition Polymerization of Linear and Cyclic Acrylic Monomers by N-Heterocyclic Carbenes: Mechanisms of Chain Initiation, Propagation, and Termination. Journal of the American Chemical Society, 2013, 135, 17925-17942.	6.6	91
103	Enantioselective Polymerization of Epoxides Using Biaryl-Linked Bimetallic Cobalt Catalysts: A Mechanistic Study. Journal of the American Chemical Society, 2013, 135, 18901-18911.	6.6	91
104	Assessing the pK _a â€Dependent Activity of Hydroxyl Hydrogen Bond Donors in the Organocatalyzed Cycloaddition of Carbon Dioxide to Epoxides: Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2019, 361, 366-373.	2.1	91
105	Electronic Effects in (salen)Mn-Based Epoxidation Catalysts. Journal of Organic Chemistry, 2003, 68, 6202-6207.	1.7	90
106	Mixed Phosphite/ <i>N</i> -Heterocyclic Carbene Complexes: Synthesis, Characterization and Catalytic Studies. Organometallics, 2010, 29, 1443-1450.	1.1	90
107	Roomâ€Temperature Synthesis of Tetraâ€ <i>ortho</i> â€Substituted Biaryls by NHCâ€Catalyzed Suzuki–Miyau Couplings. Chemistry - A European Journal, 2011, 17, 12886-12890.	ra 1.7	90
108	Theoretical Investigation of Active Sites at the Corners of MgCl ₂ Crystallites in Supported Ziegler–Natta Catalysts. Macromolecules, 2012, 45, 3695-3701.	2.2	90

#	Article	IF	CITATIONS
109	Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-Defined Manganese(II) Complex. ACS Catalysis, 2018, 8, 4103-4109.	5.5	90
110	In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction. Applied Catalysis B: Environmental, 2017, 213, 177-189.	10.8	88
111	Turning a Methanation Co Catalyst into an In–Co Methanol Producer. ACS Catalysis, 2019, 9, 6910-6918.	5.5	88
112	Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 2651-2661.	8.8	88
113	Chain Propagation and Termination Mechanisms for Polymerization of Conjugated Polar Alkenes by [Al]-Based Frustrated Lewis Pairs. Macromolecules, 2014, 47, 7765-7774.	2.2	87
114	Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint. Physical Chemistry Chemical Physics, 2014, 16, 20548-20560.	1.3	86
115	Radical Intermediates in the Jacobsen - Katsuki Epoxidation. Angewandte Chemie - International Edition, 2000, 39, 589-592.	7.2	85
116	"Living―Propene Polymerization with Bis(phenoxyimine) Group 4 Metal Catalysts: New Strategies and Old Concepts. Organometallics, 2004, 23, 5989-5993.	1.1	85
117	Accuracy of DLPNO–CCSD(T) Method for Noncovalent Bond Dissociation Enthalpies from Coinage Metal Cation Complexes. Journal of Chemical Theory and Computation, 2015, 11, 4664-4676.	2.3	85
118	Origin of the Regiochemistry of Propene Insertion at Octahedral Column 4 Polymerization Catalysts:Â Design or Serendipity?. Journal of the American Chemical Society, 2003, 125, 7172-7173.	6.6	83
119	Influence of 1,3-Diethers on the Stereospecificity of Propene Polymerization by Supported Zieglerâ~'Natta Catalysts. A Theoretical Investigation on Their Adsorption on (110) and (100) Lateral Cuts of MgCl2Platelets. Macromolecules, 2000, 33, 1134-1140.	2.2	82
120	[Pd(NHC)(allyl)Cl] Complexes: Synthesis and Determination of the NHC Percent Buried Volume (% <i>V</i> _{bur}) Steric Parameter. European Journal of Inorganic Chemistry, 2009, 2009, 1767-1773.	1.0	82
121	Model catalytic sites for olefin polymerization and diastereoselectivity in the cyclopolymerization of 1,5-hexadiene. Macromolecules, 1993, 26, 260-267.	2.2	81
122	Control of Chain Walking by Weak Neighboring Group Interactions in Unsymmetrical Catalysts. Journal of the American Chemical Society, 2018, 140, 1305-1312.	6.6	80
123	Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Research, 2006, 34, 865-879.	6.5	79
124	Mg ²⁺ binding and archaeosine modification stabilize the G15–C48 Levitt base pair in tRNAs. Rna, 2007, 13, 1427-1436.	1.6	79
125	The Doping Effect of Fluorinated Aromatic Solvents on the Rate of Rutheniumâ€Catalysed Olefin Metathesis. Chemistry - A European Journal, 2011, 17, 12981-12993.	1.7	79
126	A Density Functional and Molecular Mechanics Study Of β-Hydrogen Transfer in Homogeneous Zieglerâ "Natta Catalysis. Macromolecules, 1996, 29, 2729-2737.	2.2	78

#	Article	IF	CITATIONS
127	Mechanistic Study of Suzuki–Miyaura Crossâ€Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. ChemCatChem, 2018, 10, 3096-3106.	1.8	78
128	Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries. Nano Letters, 2020, 20, 3247-3254.	4.5	78
129	Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction. Proceedings of the United States of America, 2011, 108, 8955-8959.	3.3	77
130	The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis. Journal of Chemical Theory and Computation, 2014, 10, 4442-4448.	2.3	77
131	Additives Engineered Nonflammable Electrolyte for Safer Potassium Ion Batteries. Advanced Functional Materials, 2020, 30, 2001934.	7.8	77
132	Modeling the structureâ€property relationships of nanoneedles: A journey toward nanomedicine. Journal of Computational Chemistry, 2009, 30, 275-284.	1.5	76
133	Supramolecular Water Oxidation with Ru–bdaâ€Based Catalysts. Chemistry - A European Journal, 2014, 20, 17282-17286.	1.7	76
134	Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing. Chemistry of Materials, 2018, 30, 2719-2725.	3.2	76
135	Amino acid ionic liquids as potential candidates for CO2 capture: Combined density functional theory and molecular dynamics simulations. Chemical Physics Letters, 2020, 745, 137239.	1.2	76
136	Gold(i)-catalyzed synthesis of furans and pyrroles via alkyne hydration. Catalysis Science and Technology, 2011, 1, 58.	2.1	75
137	How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?. Dalton Transactions, 2013, 42, 7433.	1.6	75
138	Role of Oxidized Mo Species on the Active Surface of Ni–Mo Electrocatalysts for Hydrogen Evolution under Alkaline Conditions. ACS Catalysis, 2020, 10, 12858-12866.	5.5	75
139	Coordinatively Unsaturated Ruthenium Complexes As Efficient Alkyne–Azide Cycloaddition Catalysts. Organometallics, 2012, 31, 756-767.	1.1	74
140	Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioetherâ€Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure–Reactivity Relationship and Mechanistic DFT Study. Advanced Synthesis and Catalysis, 2016, 358, 3231-3243.	2.1	74
141	Prediction of protein assemblies, the next frontier: The <scp>CASP14 APRI</scp> experiment. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1800-1823.	1.5	73
142	Propene Polymerization with the Isospecific, Highly Regioselectiverac-Me2C(3-t-Bu-1-Ind)2ZrCl2/MAO Catalyst. 2. Combined DFT/MM Analysis of Chain Propagation and Chain Release Reactions. Organometallics, 2001, 20, 1918-1931.	1.1	72
143	Model-Based Design of Stable Electrolytes for Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 3124-3131.	8.8	71
144	Mechanistic Insights into the <i>cis</i> – <i>trans</i> Isomerization of Ruthenium Complexes Relevant	1.7	70

#	Article	IF	CITATIONS
145	Multicomponent Synthesis of Unsymmetrical Unsaturated Nâ€Heterocyclic Carbene Precursors and Their Related Transitionâ€Metal Complexes. Angewandte Chemie - International Edition, 2013, 52, 14103-14107.	7.2	70
146	Manganese-Salen Complexes as Oxygen-Transfer Agents in Catalytic Epoxidations â^' A Density Functional Study of Mechanistic Aspects. European Journal of Inorganic Chemistry, 2003, 2003, 892-902.	1.0	69
147	Buried Volume Analysis for Propene Polymerization Catalysis Promoted by Group 4 Metals: A Tool for Molecular Mass Prediction. ACS Catalysis, 2015, 5, 6815-6822.	5.5	69
148	Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C _{sp3} –H Bonds. Journal of the American Chemical Society, 2020, 142, 16942-16952.	6.6	69
149	Dynamics of the NbCl ₅ â€Catalyzed Cycloaddition of Propylene Oxide and CO ₂ : Assessing the Dual Role of the Nucleophilic Coâ€Catalysts. Chemistry - A European Journal, 2014, 20, 11870-11882.	1.7	68
150	Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. Organometallics, 2017, 36, 2088-2095.	1.1	68
151	Exploring the Reactivity of Ru-Based Metathesis Catalysts with a Ï€-Acid Ligand Trans to the Ruâ^'Ylidene Bond. Journal of the American Chemical Society, 2009, 131, 9000-9006.	6.6	67
152	Thermodynamics of Formation of Uncovered and Dimethyl Ether-Covered MgCl ₂ Crystallites. Consequences in the Structure of Ziegler–Natta Heterogeneous Catalysts. Journal of Physical Chemistry C, 2011, 115, 13322-13328.	1.5	67
153	Towards more realistic computational modeling of homogenous catalysis by density functional theory: combined QM/MM and ab initio molecular dynamics. Catalysis Today, 1999, 50, 479-500.	2.2	66
154	Key Interactions in Heterogeneous Zieglerâ^'Natta Catalytic Systems:  Structure and Energetics of TiCl4â^'Lewis Base Complexes. Journal of Physical Chemistry C, 2007, 111, 4412-4419.	1.5	66
155	Computational methods to predict the reactivity of nanoparticles through structure–property relationships. Expert Opinion on Drug Delivery, 2010, 7, 295-305.	2.4	64
156	Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li–S Battery. Advanced Functional Materials, 2018, 28, 1802244.	7.8	64
157	A Molecular Dynamics Study of the First Five Generations of Poly(Propylene Imine) Dendrimers Modified with N-tBoc-L-Phenylalanine. Chemistry - A European Journal, 1998, 4, 927-934.	1.7	63
158	A Theoretical Study of Steric and Electronic Effects in the Rhodium-Catalyzed Carbonylation Reactions. Journal of the American Chemical Society, 2001, 123, 12294-12302.	6.6	63
159	Hexafluorobenzene: a powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction. Chemical Communications, 2012, 48, 1650-1652.	2.2	63
160	Complete Mechanism of if^* Intramolecular Aromatic Hydroxylation through O ₂ Activation by a Macrocyclic Dicopper(I) Complex. Journal of the American Chemical Society, 2008, 130, 17710-17717.	6.6	62
161	Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds. ACS Catalysis, 2016, 6, 7970-7976.	5.5	62
162	Direct versus ligand-exchange synthesis of [PtAg ₂₈ (BDT) ₁₂ (TPP) ₄] ^{4â^'} nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties. Nanoscale, 2017, 9, 9529-9536.	2.8	62

#	Article	IF	CITATIONS
163	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	11.1	62
164	Mechanism of Racemization of Chiral Alcohols Mediated by 16-Electron Ruthenium Complexes. Journal of the American Chemical Society, 2010, 132, 13146-13149.	6.6	61
165	Activation and Deactivation of Neutral Palladium(II) Phosphinesulfonato Polymerization Catalysts. Organometallics, 2012, 31, 8388-8406.	1.1	61
166	A Theoretical Study of Syndiospecific Styrene Polymerization with Cp-Based and Cp-Free Titanium Catalysts. 2. Mechanism of Chain-End Stereocontrol. Macromolecules, 2001, 34, 5379-5385.	2.2	60
167	Chemodivergent Metathesis of Dienynes Catalyzed by Ruthenium–Indenylidene Complexes: An Experimental and Computational Study. Chemistry - A European Journal, 2009, 15, 10244-10254.	1.7	60
168	Catalyst-Site-Controlled Coordination Polymerization of Polar Vinyl Monomers to Highly Syndiotactic Polymers. Journal of the American Chemical Society, 2010, 132, 2695-2709.	6.6	60
169	A computational perspective of olefins metathesis catalyzed by N-heterocyclic carbene ruthenium (pre)catalysts. Catalysis Science and Technology, 2011, 1, 1287.	2.1	60
170	Ï€-Face Donation from the Aromatic N-Substituent of N-Heterocyclic Carbene Ligands to Metal and Its Role in Catalysis. Journal of the American Chemical Society, 2012, 134, 8127-8135.	6.6	60
171	How phenyl makes a difference: mechanistic insights into the ruthenium(<scp>ii</scp>)-catalysed isomerisation of allylic alcohols. Chemical Science, 2014, 5, 180-188.	3.7	60
172	Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst. Journal of CO2 Utilization, 2017, 20, 243-252.	3.3	60
173	Regiodivergent Hydroborative Ring Opening of Epoxides via Selective C–O Bond Activation. Journal of the American Chemical Society, 2020, 142, 14286-14294.	6.6	60
174	Mechanistic insights into the double C–H (de)activation route of a Ru-based olefin metathesis catalystâ~†. Journal of Molecular Catalysis A, 2010, 324, 75-79.	4.8	59
175	A versatile gold synthon for acetylene C–H bond activation. Dalton Transactions, 2010, 39, 10382.	1.6	59
176	Concepts for Stereoselective Acrylate Insertion. Journal of the American Chemical Society, 2013, 135, 1026-1036.	6.6	59
177	Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene. ACS Catalysis, 2017, 7, 1592-1600.	5.5	59
178	On the Accuracy of DFT Methods in Reproducing Ligand Substitution Energies for Transition Metal Complexes in Solution: The Role of Dispersive Interactions. ChemPhysChem, 2012, 13, 562-569.	1.0	58
179	Insights into the Decomposition of Olefin Metathesis Precatalysts. Angewandte Chemie - International Edition, 2014, 53, 8995-8999.	7.2	58
180	An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Research, 2015, 43, 6714-6729.	6.5	58

#	Article	IF	CITATIONS
181	An Alternative Reaction Pathway for Iridium-Catalyzed Water Oxidation Driven by Cerium Ammonium Nitrate (CAN). ACS Catalysis, 2016, 6, 4559-4563.	5.5	58
182	Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation. Organic Letters, 2018, 20, 3105-3108.	2.4	58
183	Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis. ACS Catalysis, 2018, 8, 5637-5656.	5.5	58
184	Nickel-catalyzed Suzuki–Miyaura cross-couplings of aldehydes. Nature Communications, 2019, 10, 1957.	5.8	58
185	<i>C</i> ₂ â€Symmetric Chiral Disulfoxide Ligands in Rhodiumâ€Catalyzed 1,4â€Addition: From Ligand Synthesis to the Enantioselection Pathway. Chemistry - A European Journal, 2010, 16, 14335-14347.	1.7	57
186	Gold Nanoparticle/Polymer Interfaces: All Atom Structures from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2011, 115, 15154-15163.	1.5	57
187	Comparison of different ruthenium–alkylidene bonds in the activation step with N-heterocyclic carbene Ru-catalysts for olefins metathesis. Dalton Transactions, 2011, 40, 11066.	1.6	57
188	Tandem Conversion of CO ₂ to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, 2019, 11, 2879-2886.	1.8	57
189	Buchwald–Hartwig cross-coupling of amides (transamidation) by selective N–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2020, 10, 710-716.	2.1	57
190	Adsorptive Molecular Sieving of Styrene over Ethylbenzene by Trianglimine Crystals. Journal of the American Chemical Society, 2021, 143, 4090-4094.	6.6	57
191	Stereoselectivity in Metallocene-Catalyzed Coordination Polymerization of Renewable Methylene Butyrolactones: From Stereo-random to Stereo-perfect Polymers. Journal of the American Chemical Society, 2012, 134, 7278-7281.	6.6	56
192	Synthesis and Reactivity of Ruthenium Phosphite Indenylidene Complexes. Organometallics, 2012, 31, 7415-7426.	1.1	56
193	Highly Efficient and Eco-Friendly Gold-Catalyzed Synthesis of Homoallylic Ketones. ACS Catalysis, 2014, 4, 2701-2705.	5.5	56
194	Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation. ACS Catalysis, 2018, 8, 2582-2588.	5.5	56
195	[Pd(NHC)(μ-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. IScience, 2020, 23, 101377.	1.9	56
196	Biodegradable Polyhydroxyalkanoates by Stereoselective Copolymerization of Racemic Diolides: Stereocontrol and Polyolefin‣ike Properties. Angewandte Chemie - International Edition, 2020, 59, 7881-7890.	7.2	56
197	Toward a Catalytic Cycle for the Mnâ^'Salen Mediated Alkene Epoxidation:Â A Computational Approach. Inorganic Chemistry, 2004, 43, 2175-2182.	1.9	54
198	A combined mechanistic and computational study of the gold(I)-catalyzed formation of substituted indenes. Organic and Biomolecular Chemistry, 2011, 9, 101-104.	1.5	54

#	Article	IF	CITATIONS
199	From Olefin Metathesis Catalyst to Alcohol Racemization Catalyst in One Step. Angewandte Chemie - International Edition, 2012, 51, 1042-1045.	7.2	54
200	Manganeseâ€Catalyzed Multicomponent Synthesis of Pyrroles through Acceptorless Dehydrogenation Hydrogen Autotransfer Catalysis: Experiment and Computation. ChemSusChem, 2019, 12, 3083-3088.	3.6	54
201	A Mechanistically and Operationally Simple Route to Metal–Nâ€Heterocyclic Carbene (NHC) Complexes. Chemistry - A European Journal, 2020, 26, 4515-4519.	1.7	54
202	On the effects of methyl substituents on chelating ligands in models for homogeneous isospecific Ziegler-Natta catalysis. Polymer, 1991, 32, 1329-1335.	1.8	53
203	Influence of π-Ligand Substitutions on the Regiospecificity and Stereospecificity in Isospecific Zirconocenes for Propene Polymerization. A Molecular Mechanics Analysis. Macromolecules, 1998, 31, 3431-3438.	2.2	53
204	Activation of Hydrogen by Palladium(0): Formation of the Mononuclear Dihydride Complex <i>trans</i> â€{Pd(H) ₂ (IPr)(PCy ₃)]. Angewandte Chemie - International Edition, 2009, 48, 5182-5186.	7.2	53
205	Controlling the hydrogenolysis of silica-supported tungsten pentamethyl leads to a class of highly electron deficient partially alkylated metal hydrides. Chemical Science, 2016, 7, 1558-1568.	3.7	53
206	Occurrence and stability of lone pair–i̇́€ stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Research, 2017, 45, 11019-11032.	6.5	53
207	Rationalizing current strategies to protect N-heterocyclic carbene-based ruthenium catalysts active in olefin metathesis from C–H (de)activation. Chemical Communications, 2011, 47, 6674.	2.2	52
208	Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions. Frontiers in Chemistry, 2017, 5, 43.	1.8	52
209	Transition Metal Mediated Epoxidation as Test Case for the Performance of Different Density Functionals:  A Computational Study. Journal of Physical Chemistry A, 2003, 107, 5466-5471.	1.1	51
210	Inverting the Diastereoselectivity of the Mukaiyama–Michael Addition with Graphite-Based Catalysts. ACS Catalysis, 2014, 4, 492-496.	5.5	51
211	On the Mechanism of the Digold(I)–Hydroxide atalysed Hydrophenoxylation of Alkynes. Chemistry - A European Journal, 2016, 22, 1125-1132.	1.7	51
212	Single-Step Access to Long-Chain Î \pm ,ï‰-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids. ACS Catalysis, 2016, 6, 8229-8238.	5.5	51
213	Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters. Journal of the American Chemical Society, 2016, 138, 2021-2035.	6.6	51
214	Theoretical Study of Syndiospecific Styrene Polymerization with Cp-Based and Cp-Free Titanium Catalysts. 1. Mechanism of Chain Propagation. Macromolecules, 2001, 34, 2459-2468.	2.2	50
215	N-Heterocyclic Carbene Complexes of Au, Pd, and Pt as Effective Catalysts in Organic Synthesis. Topics in Current Chemistry, 2011, 302, 131-155.	4.0	50
216	Comparison of ab Initio and DFT Methods for Studying Chain Propagation and Chain Termination Processes with Group 4 Polymerization Catalysts. 1. The ansa-Bis(cyclopentadienyl)zirconium Catalyst. Organometallics, 2002, 21, 4939-4949.	1.1	49

#	Article	IF	CITATIONS
217	Insertion of a N-Heterocyclic Carbene (NHC) into a Platinumâ^'Olefin Bond. Organometallics, 2007, 26, 3286-3288.	1.1	49
218	Steric and Electronic Parameters of a Bulky yet Flexible N-Heterocyclic Carbene: 1,3-Bis(2,6-bis(1-ethylpropyl)phenyl)imidazol-2-ylidene (IPent). Organometallics, 2013, 32, 3249-3252.	1.1	49
219	Comparing Ru and Fe-catalyzed olefin metathesis. Dalton Transactions, 2014, 43, 11216-11220.	1.6	48
220	Asymmetric Magnesium atalyzed Hydroboration by Metal‣igand Cooperative Catalysis. Angewandte Chemie - International Edition, 2019, 58, 17567-17571.	7.2	48
221	A Siteâ€&elective Doping Strategy of Carbon Anodes with Remarkable Kâ€Ion Storage Capacity. Angewandte Chemie, 2020, 132, 4478-4485.	1.6	48
222	Ligand Mobility and Solution Structures of the Metallocenium Ion Pairs [Me ₂ C(Cp)(fluorenyl)MCH ₂ SiMe ₃ ⁺ ···X ^{â^'}] (M = Zr, Hf; X = MeB(C ₆ F ₅) ₃ ,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 532 ⁻	Td ¹ (B(C <s< td=""><td>ub⁴⁷6F</td></s<>	ub ⁴⁷ 6F
223	Frequency and Effect of the Binding of Mg ²⁺ , Mn ²⁺ , and Co ²⁺ Ions on the Guanine Base in Watsonâ^Crick and Reverse Watsonâ^Crick Base Pairs. Journal of Physical Chemistry B, 2009, 113, 15670-15678.	1.2	47
224	The Pivotal Role of Symmetry in the Rutheniumâ€Catalyzed Ringâ€Closing Metathesis of Olefins. Chemistry - A European Journal, 2011, 17, 8618-8629.	1.7	47
225	A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand. Catalysis Science and Technology, 2012, 2, 1640.	2.1	46
226	Determination of the electronic, dielectric, and optical properties of sillenite Bi12TiO20 and perovskite-like Bi4Ti3O12 materials from hybrid first-principle calculations. Journal of Chemical Physics, 2016, 144, 134702.	1.2	45
227	Unusual NHC–Iridium(I) Complexes and Their Use in the Intramolecular Hydroamination of Unactivated Aminoalkenes. Chemistry - A European Journal, 2016, 22, 6939-6946.	1.7	45
228	Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. Journal of Chemical Theory and Computation, 2017, 13, 3537-3560.	2.3	45
229	Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach. Journal of Chemical Theory and Computation, 2017, 13, 3220-3227.	2.3	45
230	Auâ‹â‹Aa^`C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie - International Edition, 2021, 60, 21014-21024.	7.2	45
231	Stereoselectivity and Chemoselectivity in Zieglerâ^'Natta Polymerizations of Conjugated Dienes. 1. Monomers with Low-Energy s-Cisl·4Coordination§. Macromolecules, 2001, 34, 7952-7960.	2.2	44
232	Significant Impact of Exposed Facets on the BiVO ₄ Material Performance for Photocatalytic Water Splitting Reactions. Journal of Physical Chemistry Letters, 2020, 11, 5497-5503.	2.1	44
233	Molecular Mechanics and Stereospecificity in Zieglerâ^'Natta 1,2 and Cis-1,4 Polymerizations of Conjugated Dienes. Macromolecules, 1997, 30, 677-684.	2.2	43
234	Higher order structural effects stabilizing the reverse Watson–Crick Guanine-Cytosine base pair in functional RNAs. Nucleic Acids Research, 2014, 42, 714-726.	6.5	43

#	Article	IF	CITATIONS
235	Investigating Phthalate and 1,3-Diether Coverage and Dynamics on the (104) and (110) Surfaces of MgCl ₂ -Supported Ziegler–Natta Catalysts. Journal of Physical Chemistry C, 2014, 118, 8050-8058.	1.5	43
236	Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Physical Chemistry Chemical Physics, 2017, 19, 9374-9391.	1.3	43
237	Catalysis of silica-based anode (de-)lithiation: compositional design within a hollow structure for accelerated conversion reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 12306-12313.	5.2	43
238	Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nature Communications, 2021, 12, 5914.	5.8	43
239	Probing the Mechanism of O ₂ Activation by a Copper(I) Biomimetic Complex of a Câ^H Hydroxylating Copper Monooxygenase. Inorganic Chemistry, 2009, 48, 4062-4066.	1.9	42
240	Troubles in the Systematic Prediction of Transition Metal Thermochemistry with Contemporary Out-of-the-Box Methods. Journal of Chemical Theory and Computation, 2016, 12, 1542-1560.	2.3	42
241	Asymmetric Hydroboration of Heteroaryl Ketones by Aluminum Catalysis. Journal of the American Chemical Society, 2019, 141, 19415-19423.	6.6	42
242	Closed-Loop Polymer Upcycling by Installing Property-Enhancing Comonomer Sequences and Recyclability. Macromolecules, 2019, 52, 4570-4578.	2.2	42
243	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	6.6	42
244	Simple Synthetic Routes to Carbeneâ€Mâ€Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. Chemistry - A European Journal, 2021, 27, 11904-11911.	1.7	42
245	Dynamic Properties of Metallocenium Ion Pairs in Solution by Atomistic Simulations. Journal of the American Chemical Society, 2006, 128, 10952-10959.	6.6	41
246	Structural analogies between homogeneous and heterogeneous catalysts for the stereospecific polymerization of 1-alkenes. Journal of Molecular Catalysis, 1992, 74, 433-442.	1.2	40
247	How Well Can DFT Reproduce Key Interactions in Ziegler–Natta Systems?. Macromolecular Chemistry and Physics, 2013, 214, 1980-1989.	1.1	40
248	Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system. Chemical Communications, 2015, 51, 12931-12934.	2.2	40
249	CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts. Bioinformatics, 2015, 31, 1481-1483.	1.8	40
250	Parametrization of an Empirical Correction Term to Density Functional Theory for an Accurate Description of π-Stacking Interactions in Nucleic Acids. Journal of Physical Chemistry B, 2007, 111, 13124-13134.	1.2	39
251	Major Difference in Visible-Light Photocatalytic Features between Perfect and Self-Defective Ta ₃ N ₅ Materials: A Screened Coulomb Hybrid DFT Investigation. Journal of Physical Chemistry C, 2014, 118, 20784-20790.	1.5	39
252	Enhanced Carrier Transport and Bandgap Reduction in Sulfur-Modified BiVO ₄ Photoanodes. Chemistry of Materials, 2018, 30, 8630-8638.	3.2	39

#	Article	IF	CITATIONS
253	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	2.2	39
254	Controlled Acrylate Insertion Regioselectivity in Diazaphospholidine-Sulfonato Palladium(II) Complexes. Organometallics, 2012, 31, 8505-8515.	1.1	38
255	Ranking multiple docking solutions based on the conservation of interâ€residue contacts. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1571-1584.	1.5	38
256	Exploring the mechanism of Grignard metathesis polymerization of 3-alkylthiophenes. Dalton Transactions, 2014, 43, 15143-15150.	1.6	38
257	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China Materials, 2017, 60, 811-818.	3.5	38
258	Cycloaddition of CO2 to challenging N-tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights. Molecular Catalysis, 2017, 443, 280-285.	1.0	38
259	A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis. ACS Catalysis, 2018, 8, 2715-2729.	5.5	38
260	Catalytic deuteration of silanes mediated by N-heterocyclic carbene-Ir(iii) complexes. Chemical Communications, 2011, 47, 9723.	2.2	36
261	Exploring Electronic and Steric Effects on the Insertion and Polymerization Reactivity of Phosphinesulfonato Pd ^{II} Catalysts. Chemistry - A European Journal, 2013, 19, 17773-17788.	1.7	36
262	Application of Semiempirical Methods to Transition Metal Complexes: Fast Results but Hard-to-Predict Accuracy. Journal of Chemical Theory and Computation, 2018, 14, 3428-3439.	2.3	36
263	Hydrogenation of CO ₂ â€Derived Carbonates and Polycarbonates to Methanol and Diols by Metal–Ligand Cooperative Manganese Catalysis. Angewandte Chemie, 2018, 130, 13627-13631.	1.6	36
264	Regiochemistry of propene insertion with group 4 polymerization catalysts from a theoretical perspective. Journal of Organometallic Chemistry, 2007, 692, 4519-4527.	0.8	35
265	Energetics of the ruthenium–halide bond in olefin metathesis (pre)catalysts. Dalton Transactions, 2013, 42, 7312-7317.	1.6	35
266	Impact of Electronic Modification of the Chelating Benzylidene Ligand in <i>cis</i> -Dichloro-Configured Second-Generation Olefin Metathesis Catalysts on Their Activity. Organometallics, 2014, 33, 2806-2813.	1.1	35
267	Well-Defined Surface Species [(≡Si—O—)W(â•O)Me ₃] Prepared by Direct Methylation of [(≡Si—O—)W(â•O)Cl ₃], a Catalyst for Cycloalkane Metathesis and Transformation of Ethylene to Propylene. ACS Catalysis, 2015, 5, 2164-2171.	2 5.5	35
268	Stability and Cations Coordination of DNA and RNA 14-Mer G-Quadruplexes: A Multiscale Computational Approach. Journal of Physical Chemistry B, 2008, 112, 12115-12123.	1.2	34
269	Impact of Interfacial Defects on the Properties of Monolayer Transition Metal Dichalcogenide Lateral Heterojunctions. Journal of Physical Chemistry Letters, 2017, 8, 1664-1669.	2.1	34
270	Optically Pure <i>C</i> ₁ -Symmetric Cyclic(alkyl)(amino)carbene Ruthenium Complexes for Asymmetric Olefin Metathesis. Journal of the American Chemical Society, 2020, 142, 19895-19901.	6.6	34

#	Article	IF	CITATIONS
271	Suzuki–Miyaura cross-coupling of esters by selective O–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(μ-Cl)Cl] ₂ precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2021, 11, 3189-3197.	2.1	34
272	Tungsten Blue Oxide as a Reusable Electrocatalyst for Acidic Water Oxidation by Plasma-Induced Vacancy Engineering. CCS Chemistry, 2021, 3, 1553-1561.	4.6	34
273	Investigating Alkoxysilane Coverage and Dynamics on the (104) and (110) Surfaces of MgCl2-Supported Ziegler–Natta Catalysts. Journal of Physical Chemistry C, 2012, 116, 22980-22986.	1.5	33
274	Single‣ite Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N ₂ â€intoâ€NH ₃ . Angewandte Chemie - International Edition, 2018, 57, 15812-15816.	7.2	33
275	CO ₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO ₂ /zeolite catalysts. Catalysis Science and Technology, 2021, 11, 1249-1268.	2.1	33
276	CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions. BMC Bioinformatics, 2012, 13, S19.	1.2	32
277	Dinuclear Ru–Aqua Complexes for Selective Epoxidation Catalysis Based on Supramolecular Substrate Orientation Effects. Chemistry - A European Journal, 2014, 20, 3898-3902.	1.7	32
278	Methane dry reforming on supported cobalt nanoparticles promoted by boron. Journal of Catalysis, 2020, 392, 126-134.	3.1	32
279	Precision Molecular Threading/Dethreading. Angewandte Chemie - International Edition, 2020, 59, 14825-14834.	7.2	32
280	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
281	Density functional study on the electronic and molecular structure of the hydroformylation catalyst HCo(CO)3. Organometallics, 1993, 12, 3586-3593.	1.1	31
282	Effects of pathological mutations on the stability of a conserved amino acid triad in retinoschisin. FEBS Letters, 2003, 544, 21-26.	1.3	31
283	Neutral Square-Planar Olefin/Alkyl Platinum(II) Complexes Containing aN,Nâ€~-Iminoâ^'Amide Ligand. Experimental and Theoretical Evidence of Relevant I€-Back-Donation in the Platinumâ^'Olefin Bond. Organometallics, 2004, 23, 2137-2145.	1.1	31
284	Comparing families of olefin polymerization precatalysts using the percentage of buried volume. Dalton Transactions, 2009, , 8885.	1.6	31
285	The intriguing modeling of <i>cis–trans s</i> electivity in ruthenium-catalyzed olefin metathesis. Beilstein Journal of Organic Chemistry, 2011, 7, 40-45.	1.3	31
286	Exploring new generations of ruthenium olefin metathesis catalysts: the reactivity of a bis-ylidene ruthenium complex by DFT. Dalton Transactions, 2013, 42, 7271.	1.6	31
287	Synthesis, Structure and Catalytic Activity of NHC–Ag ^I Carboxylate Complexes. Chemistry - A European Journal, 2016, 22, 13320-13327.	1.7	31
288	The anticancer activity of an air-stable Pd(<scp>i</scp>)-NHC (NHC = N-heterocyclic carbene) dimer. Chemical Communications, 2020, 56, 12238-12241.	2.2	31

#	Article	IF	CITATIONS
289	Extension of Surface Organometallic Chemistry to Metal–Organic Frameworks: Development of a Well-Defined Single Site [(≡Zr–Oâ")W(â•O)(CH ₂ ^{<i>t</i>} Bu) ₃] O Metathesis Catalyst. Journal of the American Chemical Society, 2020, 142, 16690-16703.	efin 6.6	31
290	Coordinationâ^'Addition Polymerization and Kinetic Resolution of Methacrylamides by Chiral Metallocene Catalysts. Macromolecules, 2009, 42, 1462-1471.	2.2	30
291	Robust Cross-Linked Stereocomplexes and C ₆₀ Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization. Journal of the American Chemical Society, 2016, 138, 9533-9547.	6.6	30
292	Accurate experimental and theoretical enthalpies of association of TiCl ₄ with typical Lewis bases used in heterogeneous Ziegler–Natta catalysis. Physical Chemistry Chemical Physics, 2017, 19, 26996-27006.	1.3	30
293	Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation. Journal of Physical Chemistry C, 2019, 123, 8112-8121.	1.5	30
294	Mechanistic insights into photochemical nickel-catalyzed cross-couplings enabled by energy transfer. Nature Communications, 2022, 13, 2737.	5.8	30
295	The activation mechanism of Fe-based olefin metathesis catalysts. Chemical Physics Letters, 2014, 610-611, 29-32.	1.2	29
296	MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories. BMC Bioinformatics, 2014, 15, S1.	1.2	29
297	Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate. Journal of Materials Chemistry C, 2015, 3, 12032-12039.	2.7	29
298	NHC–Copper(I) Halide atalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water. Chemistry - A European Journal, 2016, 22, 8089-8094.	1.7	29
299	Stereoselectivity and Chiral Recognition in Copper(I) Olefin Complexes with a Chiral Diamine. Chemistry - A European Journal, 2000, 6, 1127-1139.	1.7	29
300	A combined QM/MM study of ligand substitution enthalpies in the L2Fe(CO)3, RuCpL2Cl, and RuCp*L2Cl systems. Canadian Journal of Chemistry, 1998, 76, 1457-1466.	0.6	28
301	(E)-(Z) Selectivity in 2-Butene Copolymerization by Group 4 Metallocenes. A Combined Density Functional Theory and Molecular Mechanics Study. Journal of the American Chemical Society, 1999, 121, 8651-8652.	6.6	28
302	Mechanism ofUnlikeStereoselectivity in 1-Alkene Primary Insertions:Â Syndiospecific Propene Polymerization by Brookhart-Type Nickel(II) Catalysts. Organometallics, 2000, 19, 1343-1349.	1.1	28
303	Re-evaluation of the Mn(salen) mediated epoxidation of alkenes by means of the B3LYP* density functionalElectronic supplementary information (ESI) available: Optimised geometries, bonding energies, final gradients, spin expectation values, and imaginary frequencies for transition states. See http://www.rsc.org/suppdata/cp/b4/02188f/ Physical Chemistry Chemical Physics 2004 6 3747	1.3	28
304	Olefin Polymerizations with Group IV Metal Catalysts. , 2007, , 1005-1166.		28
305	Theoretical NMR spectroscopy of N-heterocyclic carbenes and their metal complexes. Coordination Chemistry Reviews, 2017, 344, 101-114.	9.5	28
306	Experimental and Computational Study of an Unexpected Iron atalyzed Carboetherification by Cooperative Metal and Ligand Substrate Interaction and Proton Shuttling. Angewandte Chemie - International Edition, 2017, 56, 14863-14867.	7.2	28

#	Article	IF	CITATIONS
307	Determination of the Intrinsic Defect at the Origin of Poor H ₂ Evolution Performance of the Monoclinic BiVO ₄ Photocatalyst Using Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 18204-18211.	1.5	28
308	Using sodium acetate for the synthesis of [Au(NHC)X] complexes. Dalton Transactions, 2020, 49, 9694-9700.	1.6	28
309	Quantum Mechanics Calculations on Rhodamine Dyes Require Inclusion of Solvent Water for Accurate Representation of the Structure. Journal of Physical Chemistry A, 2004, 108, 7744-7751.	1.1	27
310	Stereospecificity in Metallocene Catalyzed Acrylate Polymerizations:Â The Chiral Orientation of the Growing Chain Selects Its Own Chain End Enantioface. Journal of the American Chemical Society, 2006, 128, 16649-16654.	6.6	27
311	Cationic Bisâ€Nâ€Heterocyclic Carbene (NHC) Ruthenium Complex: Structure and Application as Latent Catalyst in Olefin Metathesis. Chemistry - A European Journal, 2014, 20, 13716-13721.	1.7	27
312	Cycloalkyl-based unsymmetrical unsaturated (U ₂)-NHC ligands: flexibility and dissymmetry in ruthenium-catalysed olefin metathesis. Dalton Transactions, 2014, 43, 7044-7049.	1.6	27
313	A Robust and Costâ€Efficient Scheme for Accurate Conformational Energies of Organic Molecules. ChemPhysChem, 2019, 20, 92-102.	1.0	27
314	Occurrence and stability of lone pair-Ï€ and OHâ€"ï€ interactions between water and nucleobases in functional RNAs. Nucleic Acids Research, 2020, 48, 5825-5838.	6.5	27
315	Operando Elucidation on the Working State of Immobilized Fluorinated Iron Porphyrin for Selective Aqueous Electroreduction of CO ₂ to CO. ACS Catalysis, 2021, 11, 6499-6509.	5.5	27
316	Using a consensus approach based on the conservation of interâ€residue contacts to rank CAPRI models. Proteins: Structure, Function and Bioinformatics, 2013, 81, 2210-2220.	1.5	26
317	High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase. Polymer Chemistry, 2014, 5, 3261.	1.9	26
318	A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts. Beilstein Journal of Organic Chemistry, 2015, 11, 1767-1780.	1.3	26
319	Silica-Supported Tungsten Carbynes (≡SiO) _{<i>x</i>} W(≡CH)(Me) _{<i>y</i>} (<i>x Organometallics, 2015, 34, 690-695.</i>) Tj ET 1.1	Qq1 1 0.784 26
320	Structural Stability, Acidity, and Halide Selectivity of the Fluoride Riboswitch Recognition Site. Journal of the American Chemical Society, 2015, 137, 299-306.	6.6	26
321	Catalytic α-Arylation of Imines Leading to N-Unprotected Indoles and Azaindoles. ACS Catalysis, 2016, 6, 2930-2938.	5.5	26
322	N-Heterocyclic olefins as initiators for the polymerization of (meth)acrylic monomers: a combined experimental and theoretical approach. Polymer Chemistry, 2017, 8, 5803-5812.	1.9	26
323	Mechanism of <i>n</i> -Butane Hydrogenolysis Promoted by Ta-Hydrides Supported on Silica. ACS Catalysis, 2014, 4, 1868-1874.	5.5	25
324	Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene. Journal of Organometallic Chemistry, 2015, 780, 43-48.	0.8	25

#	Article	IF	CITATIONS
325	Variation of the Sterical Properties of the N-Heterocyclic Carbene Coligand in Thermally Triggerable Ruthenium-Based Olefin Metathesis Precatalysts/Initiators. Organometallics, 2015, 34, 5383-5392.	1.1	25
326	Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes. Chemistry - A European Journal, 2016, 22, 10211-10224.	1.7	25
327	Morphology control of anatase TiO2 for well-defined surface chemistry. Physical Chemistry Chemical Physics, 2018, 20, 14362-14373.	1.3	25
328	Iridium atalyzed Enantioselective Hydroarylation of Alkenes through Câ^'H bond Activation: Experiment and Computation. Chemistry - A European Journal, 2020, 26, 8308-8313.	1.7	25
329	Stereoselectivity and chemoselectivity in Ziegler–Natta polymerization of conjugated dienes. 2. Mechanism for 1,2 syndiotactic polymerization of diene monomers with high energy s-cis η4 coordination. Polymer, 2004, 45, 467-485.	1.8	24
330	A theoretical view on the thermodynamic cis–trans equilibrium of dihalo ruthenium olefin metathesis (pre-)catalysts. Monatshefte Für Chemie, 2015, 146, 1131-1141.	0.9	24
331	Insights into Functionalâ€Groupâ€Tolerant Polymerization Catalysis with Phosphine–Sulfonamide Palladium(II) Complexes. Chemistry - A European Journal, 2015, 21, 2062-2075.	1.7	24
332	How easy is CO ₂ fixation by M–C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?. Organic Chemistry Frontiers, 2016, 3, 19-23.	2.3	24
333	Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity. Chemical Science, 2018, 9, 4866-4872.	3.7	24
334	Lithium dendrite-free plating/stripping: a new synergistic lithium ion solvation structure effect for reliable lithium–sulfur full batteries. Chemical Communications, 2019, 55, 5713-5716.	2.2	24
335	Oxidative Addition to Palladium(0) Made Easy through Photoexcitedâ€6tate Metal Catalysis: Experiment and Computation. Angewandte Chemie, 2019, 131, 3450-3454.	1.6	24
336	Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. Journal of Power Sources, 2020, 461, 228128.	4.0	24
337	Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wideâ€Temperature Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, .	5.6	24
338	Donor-Ligand Effect on the Product Distribution in the Manganese-Catalyzed Epoxidation of Olefins:Â A Computational Assessment. Organometallics, 2006, 25, 177-183.	1.1	23
339	Catalytic Role of Nickel in the Decarbonylative Addition of Phthalimides to Alkynes. Organometallics, 2013, 32, 6330-6336.	1.1	23
340	Rare-Earth Half-Sandwich Dialkyl and Homoleptic Trialkyl Complexes for Rapid and Stereoselective Polymerization of a Conjugated Polar Olefin. Organometallics, 2013, 32, 1459-1465.	1.1	23
341	Mechanism of the Ru–Allenylidene to Ru–Indenylidene Rearrangement in Ruthenium Precatalysts for Olefin Metathesis. Organometallics, 2015, 34, 3107-3111.	1.1	23
342	Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications. Molecular Catalysis, 2017, 440, 184-189.	1.0	23

#	Article	IF	CITATIONS
343	Nature of Nitrogen Incorporation in BiVO4Photoanodes through Chemical and Physical Methods. Solar Rrl, 2020, 4, 1900290.	3.1	23
344	Reactivity ofZandElsomers, Growing Chain Isomerization, and Chain Transfer Reactions in Ethene/2-Butene Copolymerization by Metallocene-Based Catalysts. Macromolecules, 2000, 33, 4647-4659.	2.2	22
345	Syndioselective MMA Polymerization by Group 4 Constrained Geometry Catalysts: A Combined Experimental and Theoretical Study. Macromolecules, 2008, 41, 6910-6919.	2.2	22
346	Well-defined silica supported aluminum hydride: another step towards the utopian single site dream?. Chemical Science, 2015, 6, 5456-5465.	3.7	22
347	Theoretical Characterization of the H-Bonding and Stacking Potential of Two Nonstandard Nucleobases Expanding the Genetic Alphabet. Journal of Physical Chemistry B, 2016, 120, 2216-2224.	1.2	22
348	Inner-Sphere versus Outer-Sphere Coordination of BF ₄ [–] in a NHC-Gold(I) Complex. Organometallics, 2017, 36, 2861-2869.	1.1	22
349	Synthesis and reactivity of [Au(NHC)(Bpin)] complexes. Chemical Communications, 2019, 55, 6799-6802.	2.2	22
350	Deactivation of Ru-benzylidene Grubbs catalysts active in olefin metathesis. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	21
351	From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis. Chemical Communications, 2014, 50, 2205.	2.2	21
352	Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps. Molecules, 2015, 20, 12045-12060.	1.7	21
353	Structural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core. Physical Chemistry Chemical Physics, 2016, 18, 18045-18053.	1.3	21
354	Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group. Macromolecules, 2017, 50, 1394-1401.	2.2	21
355	Ab initio assessment of Bi _{1â^'x} RE _x CuOS (RE = La, Gd, Y, Lu) solid solutions as a semiconductor for photochemical water splitting. Physical Chemistry Chemical Physics, 2017, 19, 12321-12330.	1.3	21
356	Insights into the Catalytic Activity of [Pd(NHC)(cin)Cl] (NHC=IPr, IPr ^{Cl} , IPr ^{Br}) Complexes in the Suzuki–Miyaura Reaction. ChemCatChem, 2018, 10, 601-611.	1.8	21
357	Activity enhancement <i>via</i> borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 16959-16964.	5.2	21
358	Metathetic Oxidation of 2-Butenes to Acetaldehyde by Molecular Oxygen Using the Single-Site Olefin Metathesis Catalyst (≡SiO) ₂ Mo(â•O) ₂ . ACS Catalysis, 2018, 8, 7549-7555.	5.5	21
359	Electrochemical Conversion of CO ₂ to 2-Bromoethanol in a Membraneless Cell. ACS Energy Letters, 2019, 4, 600-605.	8.8	21
360	Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chemical Biology, 2020, 15, 2872-2884.	1.6	21

#	Article	IF	CITATIONS
361	D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2 Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect. Molecules, 2021, 26, 2622.	1.7	21
362	A model for the homogeneous isospecific Ziegler-Natta polymerization of olefins: Enantioselectivity in the deuteration and deuteriooligomerization of 1-alkenes. Chirality, 1991, 3, 299-306.	1.3	20
363	Insertion of Imine into Palladiumâ^'Methyl and Palladiumâ^'Acyl Bonds. A Density Functional Study. Journal of the American Chemical Society, 1999, 121, 4238-4241.	6.6	20
364	Mechanism of Stereocontrol in Methyl Methacrylate Polymerization Promoted by <i>C</i> ₁ -Symmetric Metallocenes. Macromolecules, 2008, 41, 3439-3445.	2.2	20
365	Understanding Tantalum-Catalyzed Ethylene Trimerization: When Things Go Wrong. ACS Catalysis, 2013, 3, 1360-1364.	5.5	20
366	Mechanism of CO ₂ Fixation by Ir ^I –X Bonds (X = OH, OR, N, C). European Journal of Inorganic Chemistry, 2015, 2015, 4653-4657.	1.0	20
367	Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models. PLoS ONE, 2016, 11, e0166460.	1.1	20
368	Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces. Journal of Energy Chemistry, 2017, 26, 259-269.	7.1	20
369	Imine Metathesis Catalyzed by a Silica-Supported Hafnium Imido Complex. ACS Catalysis, 2018, 8, 9440-9446.	5.5	20
370	<i>In silico</i> design of novel NRR electrocatalysts: cobalt–molybdenum alloys. Chemical Communications, 2020, 56, 13343-13346.	2.2	20
371	Adsorption of industrial dyes on functionalized and nonfunctionalized asphaltene: A combined molecular dynamics and quantum mechanics study. Journal of Molecular Liquids, 2021, 337, 116433.	2.3	20
372	Doubly Bridgedansa-Zirconocenes Based on the Norbornadiene Skeleton: A Quantum Mechanical and Molecular Mechanics Study. Organometallics, 1996, 15, 2254-2263.	1.1	19
373	Simple Ligand Modifications as a Key to Playing with the Stability of Cu(I), Cu(II), and Cu(III) Organometallic Complexes. Inorganic Chemistry, 2009, 48, 2340-2342.	1.9	19
374	Hydride-Shuttling Chain-Transfer Polymerization of Methacrylates Catalyzed by Metallocenium Enolate Metallacycleâ^'Hydridoborate Ion Pairs. Journal of the American Chemical Society, 2011, 133, 1572-1588.	6.6	19
375	Tethering Metal Ions to Photocatalyst Particulate Surfaces by Bifunctional Molecular Linkers for Efficient Hydrogen Evolution. ChemSusChem, 2014, 7, 2575-2583.	3.6	19
376	Promotion of Selective Pathways in Isomerizing Functionalization of Plant Oils by Rigid Framework Substituents. ChemSusChem, 2014, 7, 3491-3495.	3.6	19
377	Structure–Activity Relationship To Screen Ni–Bisphosphine Complexes for the Oxidative Coupling of CO ₂ and Ethylene. Organometallics, 2017, 36, 1107-1112.	1.1	19
378	Investigating the Structure and Reactivity of Azolyl-Based Copper(I)–NHC Complexes: The Role of the Anionic Ligand. ACS Catalysis, 2017, 7, 8176-8183.	5.5	19

#	Article	IF	CITATIONS
379	Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis. ACS Catalysis, 2017, 7, 6581-6586.	5.5	19
380	Molecular recognition and adsorptive separation of <i>m</i> -xylene by trianglimine crystals. Chemical Communications, 2021, 57, 9124-9127.	2.2	19
381	Electrolyte Chemistry in 3D Metal Oxide Nanorod Arrays Deciphers Lithium Dendrite-Free Plating/Stripping Behaviors for High-Performance Lithium Batteries. Journal of Physical Chemistry Letters, 2021, 12, 4857-4866.	2.1	19
382	Gold Nâ€Heterocyclic Carbene Catalysts for the Hydrofluorination of Alkynes Using Hydrofluoric Acid: Reaction Scope, Mechanistic Studies and the Tracking of Elusive Intermediates. Chemistry - A European Journal, 2022, 28, .	1.7	19
383	Immunoinformatics Aided Design and In-Vivo Validation of a Cross-Reactive Peptide Based Multi-Epitope Vaccine Targeting Multiple Serotypes of Dengue Virus. Frontiers in Immunology, 0, 13, .	2.2	19
384	Stereoselectivity and Chiral Recognition in Copper(<scp>I</scp>) Olefin Complexes with a Chiral Diamine. Chemistry - A European Journal, 2000, 6, 1127-1139.	1.7	18
385	Synthesis, structural studies and ligand influence on the stability of aryl-NHC stabilised trimethylaluminium complexes. Dalton Transactions, 2015, 44, 15166-15174.	1.6	18
386	Solidâ€State NMR and DFT Studies on the Formation of Wellâ€Defined Silicaâ€Supported Tantallaaziridines: From Synthesis to Catalytic Application. Chemistry - A European Journal, 2016, 22, 3000-3008.	1.7	18
387	Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties. Physical Chemistry Chemical Physics, 2018, 20, 7676-7685.	1.3	18
388	Exploiting the interactions between the ruthenium Hoveyda–Grubbs catalyst and Al-modified mesoporous silica: the case of SBA15 <i>vs.</i> KCC-1. Chemical Science, 2018, 9, 3531-3537.	3.7	18
389	Complexation of trichlorosalicylic acid with alkaline and first row transition metals as a switch for their antibacterial activity. Inorganica Chimica Acta, 2018, 469, 379-386.	1.2	18
390	From Capsule to Helix: Guest-Induced Superstructures of Chiral Macrocycle Crystals. Journal of the American Chemical Society, 2020, 142, 15823-15829.	6.6	18
391	Illuminating the Intrinsic Effect of Water Co-feeding on Methane Dehydroaromatization: A Comprehensive Study. ACS Catalysis, 2021, 11, 11671-11684.	5.5	18
392	Tuning the Electronic Properties by Width and Length Modifications of Narrow- Diameter Carbon Nanotubes for Nanomedicine. Current Medicinal Chemistry, 2012, 19, 5219-5225.	1.2	17
393	Ruthenium Olefin Metathesis Catalysts Containing Fluoride. ACS Catalysis, 2015, 5, 3932-3939.	5.5	17
394	Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!. Organometallics, 2016, 35, 3288-3294.	1.1	17
395	Accurate Gas Phase Formation Enthalpies of Alloys and Refractories Decomposition Products. Inorganic Chemistry, 2017, 56, 1386-1401.	1.9	17
396	Mechanism of Insertion Polymerization of Allyl Ethers. Macromolecules, 2018, 51, 4525-4531.	2.2	17

#	Article	IF	CITATIONS
397	A Multivariate Linear Regression Approach to Predict Ethene/1-Olefin Copolymerization Statistics Promoted by Group 4 Catalysts. ACS Catalysis, 2021, 11, 4061-4070.	5.5	17
398	Iron–Cobalt-Based Materials: An Efficient Bimetallic Catalyst for Ammonia Synthesis at Low Temperatures. ACS Catalysis, 2022, 12, 587-599.	5.5	17
399	(E)â^'(Z) Selectivity in the Polymerization of 2-Butene Promoted by Ni(II) Brookhart-Type Catalysts. Macromolecules, 2005, 38, 2072-2075.	2.2	16
400	Deconstructing Selectivity in the Gold-Promoted Cyclization of Alkynyl Benzothioamides to Six-Membered Mesoionic Carbene or Acyclic Carbene Complexes. ACS Catalysis, 2014, 4, 1287-1291.	5.5	16
401	Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis. Journal of Catalysis, 2021, 394, 353-365.	3.1	16
402	[Ag ₉ (1,2-BDT) ₆] ^{3–} : How Square-Pyramidal Building Blocks Self-Assemble into the Smallest Silver Nanocluster. Inorganic Chemistry, 2021, 60, 4306-4312.	1.9	16
403	A Novel [OSSO]â€Type Chromium(III) Complex as a Versatile Catalyst for Copolymerization of Carbon Dioxide with Epoxides. Chemistry - A European Journal, 2020, 26, 5347-5353.	1.7	16
404	Molecular Dynamics Characterization of Five Pathogenic Factor X Mutants Associated with Decreased Catalytic Activity. Biochemistry, 2014, 53, 6992-7001.	1.2	15
405	Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and Its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules. Journal of Physical Chemistry B, 2015, 119, 12982-12989.	1.2	15
406	In Silico Olefin Metathesis with Ruâ€Based Catalysts Containing Nâ€Heterocyclic Carbenes Bearing C ₆₀ Fullerenes. Chemistry - A European Journal, 2016, 22, 6617-6623.	1.7	15
407	Toward the Design of New Suitable Materials for Solar Water Splitting Using Density Functional Theory. ACS Omega, 2018, 3, 18117-18123.	1.6	15
408	Mechanistic Study of Hydroamination of Alkyne through Tantalum-Based Silica-Supported Surface Species. ACS Catalysis, 2019, 9, 8719-8725.	5.5	15
409	Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes. Journal of the American Chemical Society, 2021, 143, 8046-8055.	6.6	15
410	Models for the Explanation of the Stereospecific Behaviour of Ziegler — Natta Catalysts. , 1995, , 237-249.		15
411	Mechanistic Understanding of Arylation vs Alkylation of Aliphatic C _{sp3} –H Bonds by Decatungstate–Nickel Catalysis. ACS Catalysis, 2021, 11, 13973-13982.	5.5	15
412	Molecular Modeling of Stereo- and Regioselectivity of Group 4 Heterocenes in the Polymerization of Propene. Macromolecules, 2005, 38, 3973-3976.	2.2	14
413	The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura. Thrombosis and Haemostasis, 2016, 115, 51-62.	1.8	14
414	Suitable Fundamental Properties of Ta _{0.75} V _{0.25} ON Material for Visible-Light-Driven Photocatalysis: A DFT Study. ACS Omega, 2016, 1, 1041-1048.	1.6	14

#	Article	IF	CITATIONS
415	Ground-State Gas-Phase Structures of Inorganic Molecules Predicted by Density Functional Theory Methods. ACS Omega, 2017, 2, 8373-8387.	1.6	14
416	Auâ‹â‹â‹Hâ^'C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie, 2021, 133, 21182-21192.	1.6	14
417	Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
418	Probing the Validity of the â^'CH2SiMe3 Group as a Model of the Growing Chain in Mechanistic Studies of Olefin Polymerization with Group 4 Catalysts. Organometallics, 2006, 25, 1431-1433.	1.1	13
419	Electronic Effects on Regioselectivity in Styrene Polyinsertion Promoted by Group 4 Catalysts. Organometallics, 2008, 27, 1028-1029.	1.1	13
420	Pentacoordinated Organoaluminum Complexes: A Computational Insight. Organometallics, 2012, 31, 8498-8504.	1.1	13
421	Quantifying the Impact of Relativity and of Dispersion Interactions on the Activation of Molecular Oxygen Promoted by Noble Metal Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 13707-13714.	1.5	13
422	Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands. Beilstein Journal of Organic Chemistry, 2016, 12, 154-165.	1.3	13
423	Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by Nâ€Donor SBA15 Surface Ligands: A Solidâ€5tate NMR and DFT Study. Angewandte Chemie - International Edition, 2016, 55, 11162-11166.	7.2	13
424	Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair. Physical Chemistry Chemical Physics, 2018, 20, 3699-3709.	1.3	13
425	Structural Insights in Mammalian Sialyltransferases and Fucosyltransferases: We Have Come a Long Way, but It Is Still a Long Way Down. Molecules, 2021, 26, 5203.	1.7	13
426	Reply to the Comment by Grimme on: "On the Accuracy of DFT Methods in Reproducing Ligand Substitution Energies for Transition Metal Complexes in Solution: The Role of Dispersive Interactions― ChemPhysChem, 2012, 13, 1405-1406.	1.0	12
427	Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	12
428	Mechanistic insights into the reductive dehydroxylation pathway for the biosynthesis of isoprenoids promoted by the IspH enzyme. Chemical Science, 2015, 6, 5643-5651.	3.7	12
429	Mechanism of Propylene Oxide Polymerization Promoted by N-Heterocyclic Olefins. Journal of Physical Chemistry C, 2017, 121, 2730-2737.	1.5	12
430	Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions. Organometallics, 2017, 36, 1550-1556.	1.1	12
431	Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2â€expressing cells. FASEB Journal, 2019, 33, 2327-2342.	0.2	12
432	Tricyclic Sulfoxide–Alkene Hybrid Ligands for Chiral Rh(I) Complexes: The "Matched―Diastereomer Catalyzes Asymmetric C–C Bond Formations. Organometallics, 2020, 39, 1348-1359.	1.1	12

#	Article	IF	CITATIONS
433	Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Computational and Structural Biotechnology Journal, 2021, 19, 1312-1324.	1.9	12
434	Chirality of Catalysts for Stereospecific Polymerizations. Topics in Stereochemistry, 2004, , 1-69.	2.0	11
435	Mechanism of Isotactic Styrene Polymerization with a C ₆ F ₅ -Substituted Bis(phenoxyimine) Titanium System. Macromolecules, 2012, 45, 8588-8597.	2.2	11
436	Mechanism of the Transmetalation of Organosilanes to Gold. ChemistryOpen, 2016, 5, 60-64.	0.9	11
437	Prediction of Biomolecular Complexes. , 2017, , 265-292.		11
438	SOMC grafting of vanadium oxytriisopropoxide (VO(O ⁱ Pr) ₃) on dehydroxylated silica; analysis of surface complexes and thermal restructuring mechanism. RSC Advances, 2018, 8, 20801-20808.	1.7	11
439	Remarkable Influence of α-SnWO ₄ Exposed Facets on Their Photocatalytic Performance for H ₂ and O ₂ Evolution Reactions. Journal of Physical Chemistry C, 2020, 124, 18684-18689.	1.5	11
440	Spontaneous Production of Ultrastable Reactive Oxygen Species on Titanium Oxide Surfaces Modified with Organic Ligands. Advanced Materials Interfaces, 2021, 8, 2100629.	1.9	11
441	High current density microkinetic and electronic structure analysis of CO2 reduction using Co and Fe complexes on gas diffusion electrode. Chem Catalysis, 2022, 2, 1143-1162.	2.9	11
442	Molecular mechanics and the polymerization mechanism of homogeneous and heterogeneous Zieglerâ€Natta catalysts. Makromolekulare Chemie Macromolecular Symposia, 1993, 69, 237-246.	0.6	10
443	Molecular mechanics and mechanisms of regulation of the stereospecificity in Zieglerâ€Natta catalysis. Macromolecular Symposia, 1995, 89, 307-319.	0.4	10
444	A molecular model for H2 interactions in aliphatic and aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2009, 11, 3935.	1.3	10
445	Unusual C–C Bond Cleavage in the Formation of Amine-Bis(phenoxy) Group 4 Benzyl Complexes: Mechanism of Formation and Application to Stereospecific Polymerization. Organometallics, 2014, 33, 4118-4130.	1.1	10
446	Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity. Beilstein Journal of Organic Chemistry, 2015, 11, 1458-1468.	1.3	10
447	Synthesis and characterization of a homogeneous and silica supported homoleptic cationic tungsten(<scp>vi</scp>) methyl complex: application in olefin metathesis. Chemical Communications, 2016, 52, 11270-11273.	2.2	10
448	Quantifying electronic similarities between NHC–gold(<scp>i</scp>) complexes and their isolobal imidazolium precursors. Physical Chemistry Chemical Physics, 2019, 21, 15615-15622.	1.3	10
449	Gas Phase Silver Thermochemistry from First Principles. Inorganic Chemistry, 2019, 58, 7873-7885.	1.9	10
450	σ/π Plasticity of NHCs on the Ruthenium–Phosphine and Ruthenium╥lidene Bonds in Olefin Metathesis Catalysts. Organometallics, 2020, 39, 3972-3982.	1.1	10

#	Article	IF	CITATIONS
451	Precision Molecular Threading/Dethreading. Angewandte Chemie, 2020, 132, 14935-14944.	1.6	10
452	Designing an active Ta ₃ N ₅ photocatalyst for H ₂ and O ₂ evolution reactions by specific exposed facet engineering: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 10295-10304.	1.3	10
453	Ambiguities in solvation free energies from cluster-continuum quasichemical theory: lithium cation in protic and aprotic solvents. Physical Chemistry Chemical Physics, 2021, 23, 16077-16088.	1.3	10
454	Design, scope and mechanism of highly active and selective chiral NHC–iridium catalysts for the intramolecular hydroamination of a variety of unactivated aminoalkenes. Chemical Science, 2021, 12, 3751-3767.	3.7	10
455	Regio, stereo and chemoselectivity of 2nd generation Grubbs ruthenium-catalyzed olefin metathesis. Catalysis Today, 2020, 388-389, 394-394.	2.2	10
456	Structural Basis for the Recognition in an Idiotype-Anti-Idiotype Antibody Complex Related to Celiac Disease. PLoS ONE, 2014, 9, e102839.	1.1	9
457	Switchable Diastereoselectivity in the Fluoride-Promoted Vinylogous Mukaiyama–Michael Reaction of 2-[(Trimethylsilyl)oxy]furan Catalyzed by Crown Ethers. Journal of Organic Chemistry, 2017, 82, 6629-6637.	1.7	9
458	Hydrogen atom induced magnetic behaviors in two-dimensional materials: insight on origination in the model of α-MoO ₃ . Nanoscale, 2018, 10, 14100-14106.	2.8	9
459	Selection of Low-Dimensional 3-D Geometric Descriptors for Accurate Enantioselectivity Prediction. ACS Catalysis, 2022, 12, 6934-6945.	5.5	9
460	A Preliminary Study of Host-Guest Interactions in Polymeric Clathrates – An Ab Initio Study of the Model Complexes Benzene/X2 (X = F, Cl, Br, I). European Journal of Inorganic Chemistry, 1998, 1998, 1513-1517.	1.0	8
461	A possible unified mechanism of like and unlike chain-end stereocontrol for primary propene-coordinated polymerizations. Macromolecular Chemistry and Physics, 2002, 203, 1564-1572.	1.1	8
462	A recurrent Gly43Asp substitution in coagulation Factor X rigidifies its catalytic pocket and impairs catalytic activity and intracellular trafficking. Thrombosis Research, 2014, 133, 481-487.	0.8	8
463	Experimental and Computational Study of an Unexpected Ironâ€Catalyzed Carboetherification by Cooperative Metal and Ligand Substrate Interaction and Proton Shuttling. Angewandte Chemie, 2017, 129, 15059-15063.	1.6	8
464	The activity of indenylidene derivatives in olefin metathesis catalysts. Beilstein Journal of Organic Chemistry, 2018, 14, 2956-2963.	1.3	8
465	Evaluation of experimental alkali metal ion–ligand noncovalent bond strengths with DLPNO-CCSD(T) method. Journal of Chemical Physics, 2019, 151, 014301.	1.2	8
466	Barium atalysed Dehydrocoupling of Hydrosilanes and Borinic Acids: A Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 3535-3544.	1.7	8
467	Gas-phase thermochemistry of polycyclic aromatic hydrocarbons: an approach integrating the quantum chemistry composite scheme and reaction generator. Physical Chemistry Chemical Physics, 2022, 24, 3163-3181.	1.3	8
468	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	1.6	8

#	Article	IF	CITATIONS
469	A green route to platinum N-heterocyclic carbene complexes: mechanism and expanded scope. Dalton Transactions, 2022, 51, 6204-6211.	1.6	8
470	A bifunctional catalyst based on a carbon quantum dots/mesoporous SrTiO ₃ heterostructure for cascade photoelectrochemical nitrogen reduction. Journal of Materials Chemistry A, 2022, 10, 12713-12721.	5.2	8
471	Structure and Bonding in Monomeric Iron(III) Complexes with Terminal Oxo and Hydroxo Ligands. Inorganic Chemistry, 2006, 45, 1732-1738.	1.9	7
472	Molecular modeling of the regiochemistry of olefin insertion with single-site polymerization catalysts. Kinetics and Catalysis, 2006, 47, 170-175.	0.3	7
473	Mechanism of dihydride formation and hydrogen/deuterium exchange in a cationic iridium(III) complex. Canadian Journal of Chemistry, 2009, 87, 1362-1368.	0.6	7
474	Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations. Organometallics, 2015, 34, 5549-5554.	1.1	7
475	The driving force role of ruthenacyclobutanes. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	7
476	Electronic effects in mixed N-heterocyclic carbene/phosphite indenylidene ruthenium metathesis catalysts. Dalton Transactions, 2019, 48, 11326-11337.	1.6	7
477	Unprecedented Diastereoselective Arylogous Michael Addition of Unactivated Phthalides. Chemistry - A European Journal, 2019, 25, 7131-7141.	1.7	7
478	Phenoxylation of Alkynes through Mono―and Dual Activation Using Group 11 (Cu, Ag, Au) Catalysts. European Journal of Inorganic Chemistry, 2020, 2020, 1123-1134.	1.0	7
479	The CASP13-CAPRI targets as case studies to illustrate a novel scoring pipeline integrating CONSRANK with clustering and interface analyses. BMC Bioinformatics, 2020, 21, 262.	1.2	7
480	Need for Rationally Designed SnWO ₄ Photo(electro)catalysts to Overcome the Performance Limitations for O ₂ and H ₂ Evolution Reactions. Journal of Physical Chemistry C, 2021, 125, 8488-8496.	1.5	7
481	Ab Initio and Molecular Mechanics Study of Conformational Selectivity of Chlorinated Compounds Adsorbed in the Clathrate Phase of Syndiotactic Polystyrene. The Role of Electrostatic Host-Guest Interactions. Macromolecular Theory and Simulations, 2001, 10, 349-354.	0.6	6
482	Deactivation of Ru-benzylidene Grubbs catalysts active in olefin metathesis. Procedia Computer Science, 2011, 4, 1222-1229.	1.2	6
483	Simple and cheap steric and electronic characterization of the reactivity of Ru(II) complexes containing oxazoline ligands as epoxidation catalysts. Chemical Physics Letters, 2013, 577, 142-146.	1.2	6
484	cis/trans Coordination in Olefin Metathesis by Static and Molecular Dynamic DFT Calculations. Chemistry of Heterocyclic Compounds, 2014, 50, 389-395.	0.6	6
485	Singleâ€5ite Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N ₂ â€intoâ€NH ₃ . Angewandte Chemie, 2018, 130, 16038-16042.	1.6	6
486	The role of noncovalent interactions in olefin polymerization catalysis: a further look to the fluorinated ligand effect. Molecular Catalysis, 2020, 494, 111118.	1.0	6

#	Article	IF	CITATIONS
487	Thermochemistry of 5,10,15,20-tetraphenylporphyrin. Journal of Chemical Thermodynamics, 2020, 151, 106244.	1.0	6
488	Metathesis of Classical and Functionalized Olefins Catalyzed by Silicaâ€&upported Singleâ€&ite Wellâ€Defined W and Mo Preâ€catalysts. ChemCatChem, 2020, 12, 6067-6075.	1.8	6
489	Conversion of Pd(<scp>i</scp>) off-cycle species into highly efficient cross-coupling catalysts. Dalton Transactions, 2021, 50, 5420-5427.	1.6	6
490	Gas-Phase Thermochemistry of MX ₃ and M ₂ X ₆ (M = Sc, Y; X = F, Cl,) Tj E Chemistry, 2020, 59, 17084-17095.	TQq0 0 0 1.9	rgBT /Overloc 6
491	Olefin Polymerization by Early Transition Metal Catalysts. Catalysis By Metal Complexes, 2002, , 23-56.	0.6	5
492	Living propene polymerization with Bis(phenoxy-imine) group 4 metal catalysts: A theoretical study. Kinetics and Catalysis, 2006, 47, 289-294.	0.3	5
493	Ziegler-Natta catalytic systems. Journal of Thermal Analysis and Calorimetry, 2008, 91, 101-106.	2.0	5
494	N-Heterocyclic Carbenes: An Introductory Overview. Catalysis By Metal Complexes, 2010, , 1-22.	0.6	5
495	Steric Maps to Evaluate the Role of Steric Hindrance on the IPr NHC Ligand. Procedia Computer Science, 2013, 18, 845-854.	1.2	5
496	Mechanistic Insights into the Organopolymerization of <i>N</i> -Methyl <i>N</i> -Carboxyanhydrides Mediated by <i>N</i> -Heterocyclic Carbenes. Macromolecules, 2016, 49, 7777-7784.	2.2	5
497	Unravelling the reaction mechanism for the Claisen–Tishchenko condensation catalysed by Mn(I)-PNN complexes: a DFT study. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	5
498	Evidence for Silica Surface Three- and Five-Membered Metallacycle Intermediates in the Catalytic Cycle of Hydroaminoalkylation of Olefins Using Single-Ti-Metal Catalysts. Organometallics, 2020, 39, 2438-2445.	1.1	5
499	Synthesis of Gold(I)â^'Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)â^'Difluorocarbene Species. Chemistry - A European Journal, 2021, 27, 8461-8467.	1.7	5
500	Chelation enforcing a dual gold configuration in the catalytic hydroxyphenoxylation of alkynes. Applied Organometallic Chemistry, 2021, 35, e6362.	1.7	5
501	A Density Functional Theory Study of the Syndiotactic-Specific Polymerization of Styrene. , 2001, , 299-306.		5
502	A random forest classifier for protein–protein docking models. Bioinformatics Advances, 2022, 2, .	0.9	5
503	16OSTM10: A new open-shell transition metal conformational energies database to challenge contemporary semiempirical and force field methods. Physical Chemistry Chemical Physics, 0, , .	1.3	5
504	An Empirical Correction Term to Density Functional Theory for the Description of the TiCl ₄ ‣ewis Base Complexes. Macromolecular Symposia, 2007, 260, 122-126.	0.4	4

#	ARTICLE	IF	CITATIONS
505	Vibrational Fingerprints of Low-Lying Pt _{<i>n</i>} P _{2<i>n</i>} (<i>n</i> = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces. Journal of Physical Chemistry A, 2015, 119, 11711-11718.	1.1	4
506	Investigation of Surface Alkylation Strategy in SOMC: In Situ Generation of a Silica-Supported Tungsten Methyl Catalyst for Cyclooctane Metathesis. Organometallics, 2016, 35, 2524-2531.	1.1	4
507	Organocatalytic Coupling of Bromo-Lactide with Cyclic Ethers and Carbonates to Chiral Bromo-Diesters: NHC or Anion Catalysis?. ACS Catalysis, 2017, 7, 3929-3933.	5.5	4
508	Clean and selective catalytic C-H alkylation of alkenes with environmental friendly alcohols. Molecular Catalysis, 2017, 435, 69-75.	1.0	4
509	Apixaban Interacts with Haemoglobin: Effects on Its Plasma Levels. Thrombosis and Haemostasis, 2018, 118, 1701-1712.	1.8	4
510	Regression analysis of properties of [Au(IPr)(CHR ₂)] complexes. Dalton Transactions, 2019, 48, 7693-7703.	1.6	4
511	Structural and Energetic Impact of Nonâ€natural 7â€Deazaâ€8â€azaguanine, 7â€Deazaâ€8â€azaisoguanine, and 7â€Substituted Derivatives on Hydrogenâ€Bond Pairing with Cytosine and Isocytosine. ChemBioChem, 2019, 20, 2262-2270.	l Their 1.3	4
512	Revisiting O–O Bond Formation through Outerâ€Sphere Water Molecules versus Bimolecular Mechanisms in Waterâ€Oxidation Catalysis (WOC) by Cp*Ir Based Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 2093-2100.	1.0	4
513	Conversion of racemic alcohols to optically pure amine precursors enabled by catalyst dynamic kinetic resolution: experiment and computation. Chemical Communications, 2020, 56, 9094-9097.	2.2	4
514	Straightforward synthesis of [Cu(NHC)(alkynyl)] and [Cu(NHC)(thiolato)] complexes (NHC =) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 382
515	Chiral oxazolidines acting as transient hydroxyalkyl-functionalized N-heterocyclic carbenes: an efficient route to air stable copper and gold complexes for asymmetric catalysis. Chemical Science, 0, , .	3.7	4
516	Fluxional Behavior of Molecular WMe ₆ and of Silica Grafted WMe ₆ . Organometallics, 2015, 34, 663-668.	1.1	3
517	Mechanistic Insights of a Selective C-H Alkylation of Alkenes by a Ru-based Catalyst and Alcohols. ChemistrySelect, 2016, 1, 4218-4228.	0.7	3
518	Nitrite to nitric oxide interconversion by heme Fell complex assisted by [Cul(tmpa)]+. Structural Chemistry, 2016, 27, 409-417.	1.0	3
519	Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(1â€ ⁻ 0â€ ⁻ 0) and Ni(1â€ ⁻ 0â€ ⁻ 0). Journal of Catalysis, 2018, 363, 197-203.	3.1	3
520	Insights into the Impact of Native Defects on the Conductivity of CuVO ₃ Material for Photovoltaic Application: A First-Principles Computational Study. ACS Omega, 2018, 3, 6605-6610.	1.6	3
521	Superconductivity and High-Pressure Performance of 2D Mo ₂ C Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2219-2225.	2.1	3
522	Influence of the anionic ligands on properties and reactivity of Hoveyda-Grubbs catalysts. Molecular Catalysis, 2021, 509, 111612.	1.0	3

#	Article	IF	CITATIONS
523	A Comparison of the Performance of the Semiempirical PM6 Method Versus DFT Methods in Ru-Catalyzed Olefin Metathesis. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 281-292.	0.5	3
524	Predicting Catalytic Activity from 13CCH Alkylidene Chemical Shift in Cationic Tungsten Oxo Alkylidene Nâ€Heterocyclic Carbene Complexes. ChemCatChem, 0, , .	1.8	3
525	A Career in Catalysis: Jean-Marie M. Basset. ACS Catalysis, 2022, 12, 4961-4977.	5.5	3
526	Cationic palladium(<scp>ii</scp>)-indenyl complexes bearing phosphines as ancillary ligands: synthesis, and study of indenyl amination and anticancer activity. Dalton Transactions, 2022, 51, 11135-11151.	1.6	3
527	Directions for Use of Density Functional Theory: A Short Instruction Manual for Chemists. , 2012, , 95-133.		2
528	Electronic bond tuning with heterocyclic carbenes. Dalton Transactions, 2013, 42, 7281.	1.6	2
529	The "innocent―role of Sc3+ on a non-heme Fe catalyst in an O2 environment. Dalton Transactions, 2014, 43, 11190.	1.6	2
530	Directions for Use of Density Functional Theory: A Short Instruction Manual for Chemists. , 2017, , 225-267.		2
531	Toward better understanding of the support effect: Test cases for CO dissociation on Fen/TiO2(1 1 0), n = 4, 5. Chemical Physics Letters, 2017, 684, 30-35.	1.2	2
532	Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions. Dyes and Pigments, 2017, 136, 881-886.	2.0	2
533	Tungsten Catalyst Incorporating a Wellâ€Defined Tetracoordinated Aluminum Surface Ligand for Selective Metathesis of Propane, [(≡Siâ^'Oâ''Si≡)(≡Siâ''Oâ^') ₂ Alâ^Oâ^'W(≡C <i>t</i> Bu) (H) ₂]. ChemCatChem, 2019, 11, 614-620.	1.8	2
534	Fluxional bis(phenoxy-imine) Zr and Ti catalysts for polymerization. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	2
535	Vapour pressures of fluorocarbons in polyols, polyamines and polycarboxyls. Journal of Fluorine Chemistry, 1996, 78, 167-175.	0.9	1
536	Organometallic copper I, II or III species in an intramolecular dechlorination reaction. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	1
537	Solar Water Splitting: Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment (Adv. Energy Mater. 22/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
538	Synthesis and Characterization of Cationic Tetramethyl Tantalum(V) Complex. Catalysts, 2018, 8, 507.	1.6	1
539	Ligand Effects in Pd-Catalyzed Intermolecular Alkyne Hydroarylations. Organometallics, 2019, 38, 3730-3739.	1.1	1
540	Bariumâ€Catalysed Dehydrocoupling of Hydrosilanes and Borinic Acids: A Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 3445-3445.	1.7	1

#	Article	IF	CITATIONS
541	Do New Century Catalysts Unravel the Mechanism of Stereocontrol of Old Ziegler—Natta Catalysts?. ChemInform, 2004, 35, no.	0.1	0
542	Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem, 2018, 11, 3356-3356.	3.6	0
543	Titelbild: Oxidative Addition to Palladium(0) Made Easy through Photoexcited-State Metal Catalysis: Experiment and Computation (Angew. Chem. 11/2019). Angewandte Chemie, 2019, 131, 3263-3263.	1.6	0
544	Unprecedented Diastereoselective Arylogous Michael Addition of Unactivated Phthalides. Chemistry - A European Journal, 2019, 25, 7043-7043.	1.7	0
545	Mechanism of Gold-Catalyzed Cycloisomerization of Enynyl Esters. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 293-303.	0.5	0
546	Deactivation of Ru-benzylidene Grubbs catalysts active in olefin metathesis. Highlights in Theoretical Chemistry, 2013, , 129-134.	0.0	0
547	Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2. Highlights in Theoretical Chemistry, 2014, , 143-155.	0.0	0
548	Organometallic copper I, II or III species in an intramolecular dechlorination reaction. Highlights in Theoretical Chemistry, 2014, , 105-110.	0.0	0
549	Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angewandte Chemie, 0, , .	1.6	0