Duchet-Rumeau Jannick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3064319/publications.pdf

Version: 2024-02-01

53 papers

1,596 citations

257450 24 h-index 315739 38 g-index

53 all docs

53 docs citations

53 times ranked 1720 citing authors

#	Article	IF	CITATIONS
1	lonic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Progress in Polymer Science, 2022, 132, 101581.	24.7	22
2	Thermoset-thermoplastic-ionic liquid ternary hybrids as novel functional polymer materials. Polymer, 2021, 218, 123507.	3.8	14
3	Dielectric behaviour of an epoxy network cured with a phosphonium-based ionic liquid. Polymer, 2021, 222, 123645.	3.8	9
4	Synthesis of new ionic liquid-grafted metal-oxo nanoclusters – Design of nanostructured hybrid organic-inorganic polymer networks. Polymer, 2021, 224, 123721.	3.8	9
5	In situ observation of liquid metal dealloying and etching of porous FeCr by X-ray tomography and X-ray diffraction. Materialia, 2021, 18, 101125.	2.7	O
6	Interfacial rheology testing of molten polymer systems: Effect of molecular weight and temperature on the interfacial properties. Polymer Testing, 2021, 101, 107280.	4.8	11
7	Enhanced mechanical and thermal properties of ionic liquid core/silica shell microcapsules-filled epoxy microcomposites. Polymer, 2021, 233, 124182.	3.8	10
8	Cycloaliphatic epoxidized ionic liquids as new versatile monomers for the development of shape memory PIL networks by 3D printing. Polymer Chemistry, 2020, 11, 5475-5483.	3.9	23
9	New Epoxy Thermosets Derived from a Bisimidazolium Ionic Liquid Monomer: An Experimental and Modeling Investigation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12208-12221.	6.7	25
10	Mechanical Properties of FeCrâ€Based Composite Materials Elaborated by Liquid Metal Dealloying towards Bioapplication. Advanced Engineering Materials, 2020, 22, 2000381.	3.5	8
11	Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800. Corrosion Science, 2020, 166, 108468.	6.6	20
12	Comparison of poly(ethylene glycol)-based networks obtained by cationic ring opening polymerization of neutral and 1,2,3-triazolium diepoxy monomers. Polymer Chemistry, 2020, 11, 1894-1905.	3.9	9
13	From Ionic Liquid Epoxy Monomer to Tunable Epoxy–Amine Network: Reaction Mechanism and Final Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 3602-3613.	6.7	33
14	Advanced characterization of the structuration of ionic liquids in a copolyester. European Polymer Journal, 2019, 118, 97-106.	5.4	1
15	Polyhedral oligomeric silsesquioxane-supported ionic liquid for designing nanostructured hybrid organic-inorganic networks. European Polymer Journal, 2019, 114, 332-337.	5.4	15
16	Microstructure characterization by X-ray tomography and EBSD of porous FeCr produced by liquid metal dealloying. Materials Characterization, 2018, 144, 166-172.	4.4	19
17	Structural dependence of cations and anions to building the polar phase of PVDF. European Polymer Journal, 2018, 107, 236-248.	5.4	22
18	PeakForce QNM AFM study of chitin-silica hybrid films. Carbohydrate Polymers, 2017, 166, 139-145.	10.2	13

#	Article	IF	CITATIONS
19	Toughening of Epoxy/Ionic Liquid Networks with Thermoplastics Based on Poly(2,6-dimethyl-1,4-phenylene ether) (PPE). ACS Sustainable Chemistry and Engineering, 2017, 5, 1153-1164.	6.7	32
20	Dual functions of ILs in the core-shell particle reinforced epoxy networks: Curing agent vs dispersion aids. Composites Science and Technology, 2017, 140, 30-38.	7.8	26
21	Cold-rolling influence on microstructure and mechanical properties of NiCr - Ag composites and porous NiCr obtained by liquid metal dealloying. Journal of Alloys and Compounds, 2017, 707, 251-256.	5.5	11
22	Development of Sustainable Thermosets from Cardanol-based Epoxy Prepolymer and Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2017, 5, 8429-8438.	6.7	44
23	1,2,3â€Triazoliumâ€Based Epoxy–Amine Networks: Ionâ€Conducting Polymer Electrolytes. Macromolecular Rapid Communications, 2016, 37, 1168-1174.	3.9	31
24	Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Advances, 2016, 6, 96421-96430.	3.6	29
25	Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules, 2016, 17, 3172-3187.	5.4	64
26	Supercritical CO2–Ionic Liquids: A Successful Wedding To Prepare Biopolymer Foams. ACS Sustainable Chemistry and Engineering, 2016, 4, 461-470.	6.7	13
27	Ionic liquids: A New Route for the Design of Epoxy Networks. ACS Sustainable Chemistry and Engineering, 2016, 4, 481-490.	6.7	56
28	Polymers and Ionic Liquids: A Successful Wedding. Macromolecular Chemistry and Physics, 2015, 216, 359-368.	2.2	67
29	lonic liquids–lignin combination: an innovative way to improve mechanical behaviour and water vapour permeability of eco-designed biodegradable polymer blends. RSC Advances, 2015, 5, 1989-1998.	3.6	32
30	Understanding of Versatile and Tunable Nanostructuration of Ionic Liquids on Fluorinated Copolymer. Macromolecules, 2015, 48, 4581-4590.	4.8	41
31	Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-co-terephtalate)/poly(lactic acid) (PBAT/PLA). RSC Advances, 2015, 5, 59082-59092.	3.6	62
32	Structuration of ionic liquids in a poly(butylene-adipate-co-terephthalate) matrix: its influence on the water vapour permeability and mechanical properties. Green Chemistry, 2014, 16, 3758-3762.	9.0	26
33	Effect of Ionic Liquid Modified Synthetic Layered Silicates on Thermal and Mechanical Properties of High Density Polyethylene Nanocomposites. Macromolecular Symposia, 2014, 342, 46-55.	0.7	6
34	Nanostructured thermosets from ionic liquid building block–epoxy prepolymer mixtures. RSC Advances, 2014, 4, 28099-28106.	3.6	45
35	Synergetic catalytic effect of carbon nanotubes and polyethersulfone on polymerization of glassy epoxy-based systems – isothermal kinetic modelling. Thermochimica Acta, 2014, 590, 107-115.	2.7	5
36	Synthesis and physical properties of new layered silicates based on ionic liquids: improvement of thermal stability, mechanical behaviour and water permeability of PBAT nanocomposites. RSC Advances, 2014, 4, 26452-26461.	3.6	38

#	Article	IF	CITATIONS
37	Controlled shear-induced molecular orientation and crystallization in polypropylene/talc microcomposites – Effects of the talc nature. Polymer, 2013, 54, 2764-2775.	3.8	31
38	Homogeneously and gradually anchored self-assembled monolayer by tunable vapor phase-assisted silanization. RSC Advances, 2013, 3, 10497.	3.6	5
39	Polyfluorinated mercaptoalcohol as a H-bond modifier of poly(2,3,4,5,6-pentafluorostyrene) (PPFS) enhancing miscibility of hydroxylated-PPFS with various acceptor polymers. Polymer, 2013, 54, 3757-3766.	3.8	12
40	†Pancake' vs. brush-like regime of quaternizable polymer grafts: an efficient tool for nano-templating polyelectrolyte self-assembly. Soft Matter, 2012, 8, 715-725.	2.7	34
41	Synthesis and physical properties of new layered double hydroxides based on ionic liquids: Application to a polylactide matrix. Journal of Colloid and Interface Science, 2012, 388, 123-129.	9.4	31
42	Tuning hâ€bond capability of hydroxylatedâ€poly(2,3,4,5,6â€pentafluorostyrene) grafted copolymers prepared by chemoselective and versatile thiolâ€ <i>para</i> a€fluoro "clickâ€type―coupling with mercaptoalcohols. Journal of Polymer Science Part A, 2012, 50, 3452-3460.	2.3	31
43	In situ generation of high aspect ratio silica particles in polypropylene. Journal of Sol-Gel Science and Technology, 2012, 63, 85-94.	2.4	3
44	Application of supercritical CO2 and ionic liquids for the preparation of fluorinated nanocomposites. Journal of Colloid and Interface Science, 2012, 369, 111-116.	9.4	8
45	Synthesis and Characterization of Epoxy/MCDEA Networks Modified with Imidazoliumâ€Based Ionic Liquids. Macromolecular Materials and Engineering, 2011, 296, 826-834.	3.6	81
46	Tailoring of interfacial properties by ionic liquids in a fluorinated matrix based nanocomposites. European Polymer Journal, 2011, 47, 1361-1369.	5.4	32
47	Supercritical CO2–ionic liquid mixtures for modification of organoclays. Journal of Colloid and Interface Science, 2011, 353, 225-230.	9.4	24
48	Synthesis and physical properties of new surfactants based on ionic liquids: Improvement of thermal stability and mechanical behaviour of high density polyethylene nanocomposites. Journal of Colloid and Interface Science, 2011, 354, 555-562.	9.4	68
49	Nanostructuration of ionic liquids in fluorinated matrix: Influence on the mechanical properties. Polymer, 2011, 52, 1523-1531.	3.8	25
50	A comparative study on different ionic liquids used as surfactants: Effect on thermal and mechanical properties of high-density polyethylene nanocomposites. Journal of Colloid and Interface Science, 2010, 349, 424-433.	9.4	104
51	Processing of nanocomposite foams in supercritical carbon dioxide. Part I: Effect of surfactant. Polymer, 2010, 51, 3436-3444.	3.8	19
52	Clay Dispersion and Aspect Ratios in Polymer-Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2007, 7, 3160-3171.	0.9	17
53	Evaluation of the Structure and Dispersion in Polymer-Layered Silicate Nanocomposites. Macromolecules, 2005, 38, 9661-9669.	4.8	180