
Zhenpo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3064206/publications.pdf Version: 2024-02-01

THENDO WANC

#	Article	IF	CITATIONS
1	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 2020, 120, 7020-7063.	23.0	957
2	A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. Journal of Power Sources, 2018, 390, 286-296.	4.0	367
3	Grid Power Peak Shaving and Valley Filling Using Vehicle-to-Grid Systems. IEEE Transactions on Power Delivery, 2013, 28, 1822-1829.	2.9	272
4	State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. Journal of Power Sources, 2019, 410-411, 106-114.	4.0	255
5	State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy, 2020, 190, 116467.	4.5	237
6	Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. Journal of Power Sources, 2019, 421, 56-67.	4.0	206
7	Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks. Applied Energy, 2019, 251, 113381.	5.1	191
8	An Overview on Thermal Safety Issues of Lithium-ion Batteries for Electric Vehicle Application. IEEE Access, 2018, 6, 23848-23863.	2.6	180
9	Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy, 2019, 174, 33-44.	4.5	180
10	Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles. Applied Energy, 2017, 196, 289-302.	5.1	178
11	Battery Aging Assessment for Real-World Electric Buses Based on Incremental Capacity Analysis and Radial Basis Function Neural Network. IEEE Transactions on Industrial Informatics, 2020, 16, 3345-3354.	7.2	167
12	Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model. IEEE Transactions on Power Electronics, 2021, 36, 1303-1315.	5.4	157
13	State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression. IEEE Access, 2017, 5, 21286-21295.	2.6	142
14	A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles. Measurement: Journal of the International Measurement Confederation, 2018, 116, 402-411.	2.5	131
15	Longitudinal Vehicle Speed Estimation for Four-Wheel-Independently-Actuated Electric Vehicles Based on Multi-Sensor Fusion. IEEE Transactions on Vehicular Technology, 2020, 69, 12797-12806.	3.9	118
16	Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study. Journal of Energy Chemistry, 2021, 55, 484-498.	7.1	112
17	A Novel Consistency Evaluation Method for Series-Connected Battery Systems Based on Real-World Operation Data. IEEE Transactions on Transportation Electrification, 2021, 7, 437-451.	5.3	112
18	Lithium Battery State-of-Health Estimation via Differential Thermal Voltammetry With Gaussian Process Regression. IEEE Transactions on Transportation Electrification, 2021, 7, 16-25.	5.3	85

#	Article	IF	CITATIONS
19	Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions:An experimental study. Journal of Power Sources, 2020, 455, 227939.	4.0	84
20	Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter. Energies, 2014, 7, 3204-3217.	1.6	82
21	A novel data-model fusion state-of-health estimation approach for lithium-ion batteries. Applied Energy, 2019, 237, 836-847.	5.1	69
22	A Data-Driven Method for Battery Charging Capacity Abnormality Diagnosis in Electric Vehicle Applications. IEEE Transactions on Transportation Electrification, 2022, 8, 990-999.	5.3	68
23	Thermal Runaway Prognosis of Battery Systems Using the Modified Multiscale Entropy in Real-World Electric Vehicles. IEEE Transactions on Transportation Electrification, 2021, 7, 2269-2278.	5.3	63
24	Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks. Applied Energy, 2019, 254, 113648.	5.1	60
25	Robust Lateral Motion Control for In-Wheel-Motor-Drive Electric Vehicles With Network Induced Delays. IEEE Transactions on Vehicular Technology, 2019, 68, 10585-10593.	3.9	60
26	Battery Thermal Runaway Fault Prognosis in Electric Vehicles Based on Abnormal Heat Generation and Deep Learning Algorithms. IEEE Transactions on Power Electronics, 2022, 37, 8513-8525.	5.4	60
27	Vehicle Stability Enhancement through Hierarchical Control for a Four-Wheel-Independently-Actuated Electric Vehicle. Energies, 2017, 10, 947.	1.6	58
28	A Vehicle Rollover Evaluation System Based on Enabling State and Parameter Estimation. IEEE Transactions on Industrial Informatics, 2021, 17, 4003-4013.	7.2	57
29	Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles. Energies, 2018, 11, 136.	1.6	54
30	Chassis Coordinated Control for Full X-by-Wire Vehicles-A Review. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	1.9	48
31	Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles. Energies, 2017, 10, 919.	1.6	47
32	Hybrid Control-Based Acceleration Slip Regulation for Four-Wheel-Independent-Actuated Electric Vehicles. IEEE Transactions on Transportation Electrification, 2021, 7, 1976-1989.	5.3	44
33	Evaluating Model Predictive Path Following and Yaw Stability Controllers for Over-Actuated Autonomous Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 12807-12821.	3.9	43
34	Fault-Tolerant Control for Intelligent Electrified Vehicles Against Front Wheel Steering Angle Sensor Faults During Trajectory Tracking. IEEE Access, 2021, 9, 65174-65186.	2.6	40
35	Offline and Online Blended Machine Learning for Lithium-Ion Battery Health State Estimation. IEEE Transactions on Transportation Electrification, 2022, 8, 1604-1618.	5.3	38
36	State and parameter estimation based on a modified particle filter for an in-wheel-motor-drive electric vehicle. Mechanism and Machine Theory, 2019, 133, 606-624.	2.7	36

#	Article	IF	CITATIONS
37	Sideslip angle estimation of ground vehicles: a comparative study. IET Control Theory and Applications, 2020, 14, 3490-3505.	1.2	35
38	Event-Triggered Vehicle Sideslip Angle Estimation Based on Low-Cost Sensors. IEEE Transactions on Industrial Informatics, 2022, 18, 4466-4476.	7.2	34
39	Frequency and Parameter Combined Tuning Method of LCC–LCC Compensated Resonant Converter With Wide Coupling Variation for EV Wireless Charger. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 956-968.	3.7	31
40	Integrated Vehicle-Following Control for Four-Wheel-Independent-Drive Electric Vehicles Against Non-Ideal V2X Communication. IEEE Transactions on Vehicular Technology, 2022, 71, 3648-3659.	3.9	31
41	Automotive ABS/DYC Coordinated Control Under Complex Driving Conditions. IEEE Access, 2018, 6, 32769-32779.	2.6	29
42	A Hybrid Mode Control Strategy for <i>LCC–LCC</i> Compensated WPT System With Wide ZVS Operation. IEEE Transactions on Power Electronics, 2022, 37, 2449-2460.	5.4	29
43	An Online Data-Driven Fault Diagnosis and Thermal Runaway Early Warning for Electric Vehicle Batteries. IEEE Transactions on Power Electronics, 2022, 37, 12636-12646.	5.4	29
44	Data-driven framework for large-scale prediction of charging energy in electric vehicles. Applied Energy, 2021, 282, 116175.	5.1	28
45	Multiâ€fault synergistic diagnosis of battery systems based on the modified multiâ€scale entropy. International Journal of Energy Research, 2019, 43, 8350-8369.	2.2	26
46	Advanced Vehicle State Monitoring: Evaluating Moving Horizon Estimators and Unscented Kalman Filter. IEEE Transactions on Vehicular Technology, 2019, 68, 5430-5442.	3.9	26
47	Data-driven energy management and velocity prediction for four-wheel-independent-driving electric vehicles. ETransportation, 2021, 9, 100119.	6.8	26
48	Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells. Journal of Energy Chemistry, 2022, 72, 241-257.	7.1	23
49	Assessment of battery utilization and energy consumption in the large-scale development of urban electric vehicles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
50	Electric Vehicle Battery Fault Diagnosis Based on Statistical Method. Energy Procedia, 2017, 105, 2366-2371.	1.8	21
51	A Novel Design Method of LCC-S Compensated Inductive Power Transfer System Combining Constant Current and Constant Voltage Mode via Frequency Switching. IEEE Access, 2021, 9, 117244-117256.	2.6	21
52	Thermal Runaway Characteristics of a Large Format Lithium-Ion Battery Module. Energies, 2019, 12, 3099.	1.6	20
53	DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles. Energies, 2019, 12, 2977.	1.6	20
54	Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles. Energies, 2019, 12, 4772.	1.6	20

#	Article	IF	CITATIONS
55	Modified Relative Entropy-Based Lithium-Ion Battery Pack Online Short-Circuit Detection for Electric Vehicle. IEEE Transactions on Transportation Electrification, 2022, 8, 1710-1723.	5.3	20
56	Lateral stability enhancement based on a novel sliding mode prediction control for a fourâ€wheelâ€independently actuated electric vehicle. IET Intelligent Transport Systems, 2019, 13, 124-133.	1.7	19
57	An Enabling Trajectory Planning Scheme for Lane Change Collision Avoidance on Highways. IEEE Transactions on Intelligent Vehicles, 2023, 8, 147-158.	9.4	19
58	Optimization of an Energy Storage System for Electric Bus Fast-Charging Station. Energies, 2021, 14, 4143.	1.6	18
59	State-of-Health Estimation for LiFePO ₄ Battery System on Real-World Electric Vehicles Considering Aging Stage. IEEE Transactions on Transportation Electrification, 2022, 8, 1724-1733.	5.3	18
60	Post-Impact Motion Planning and Tracking Control for Autonomous Vehicles. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	18
61	The Design and Coupler Optimization of a Single-Transmitter Coupled Multireceiver Inductive Power Transfer System for Maglev Trains. IEEE Transactions on Transportation Electrification, 2021, 7, 3173-3184.	5.3	12
62	Comparative Study of Incremental Capacity Curve Determination Methods for Lithium-Ion Batteries Considering the Real-World Situation. IEEE Transactions on Power Electronics, 2022, 37, 12563-12576.	5.4	12
63	Timely Thermal Runaway Prognosis for Battery Systems in Real-World Electric Vehicles Based on Temperature Abnormality. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 120-130.	3.7	10
64	Vehicle sideslip angle estimation for a four-wheel-independent-drive electric vehicle based on a hybrid estimator and a moving polynomial Kalman smoother. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233, 125-140.	0.5	9
65	Realâ€time identification of partnership for a new generation of vehicles battery model parameters based on the model reference adaptive system. International Journal of Energy Research, 2021, 45, 9351-9368.	2.2	9
66	Event-Triggered Vehicle-Following Control for Connected and Automated Vehicles under Nonideal Vehicle-to-Vehicle Communications. , 2021, , .		9
67	Driving Event Recognition of Battery Electric Taxi Based on Big Data Analysis. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 9200-9209.	4.7	8
68	Thermal Property Measurements of a Large Prismatic Lithium-ion Battery for Electric Vehicles. Journal of Thermal Science, 2021, 30, 477-492.	0.9	8
69	Voltage Fault Diagnosis of Power Batteries based on Boxplots and Gini Impurity for Electric Vehicles. , 2019, , .		7
70	Active camber for enhancing path following and yaw stability of over-actuated autonomous electric vehicles. Vehicle System Dynamics, 2021, 59, 800-821.	2.2	7
71	An Enhanced Dual Active Bridge Converter With Full Domain ZVS by Utilizing a Simple Segment Control for Wide Voltage Range Applications. IEEE Transactions on Industrial Electronics, 2022, 69, 6817-6827.	5.2	7
72	A Dual-Transformer-Based Hybrid Dual Active Bridge Converter for Plug-in Electric Vehicle Charging to Cope With Wide Load Voltages. IEEE Transactions on Industrial Electronics, 2023, 70, 1444-1454.	5.2	7

#	Article	lF	CITATIONS
73	Multiobjective Thermal Optimization Based on Improved Analytical Thermal Models of a 30-kW IPT System for EVs. IEEE Transactions on Transportation Electrification, 2023, 9, 1910-1926.	5.3	7
74	Integrated Sizing and Energy Management for Four-Wheel-Independently-Actuated Electric Vehicles Considering Realistic Constructed Driving Cycles. Energies, 2018, 11, 1768.	1.6	6
75	Optimal Sizing of On-Board Energy Storage Systems and Stationary Charging Infrastructures for a Catenary-Free Tram. Energies, 2020, 13, 6227.	1.6	6
76	Analyzing Charging Behavior of Electric City Buses in Typical Chinese Cities. IEEE Access, 2020, 8, 4466-4474.	2.6	6
77	Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles. Advances in Mechanical Engineering, 2021, 13, 168781402110277.	0.8	6
78	Simplified Closed-Form Optimized Trajectories Control for a Dual Active Bridge Converter With ZVS Implementation Over Whole Domain. IEEE Transactions on Power Electronics, 2022, 37, 11749-11761.	5.4	6
79	Analysis and Design of Double-sided LCLC Compensation Parameters with Coupling-insensitive ZVS Operation for Capacitive Power Transfer. , 2019, , .		5
80	Novel Polarization Voltage Model: Accurate Voltage and State of Power Prediction. IEEE Access, 2020, , 1-1.	2.6	5
81	A Time-delay Neural Network of Sideslip Angle Estimation for In-wheel Motor Drive Electric Vehicles. , 2020, , .		5
82	A Novel Voltage-Fed Hybrid Bridge Combining Semiactive Rectifier Converter for Wide Voltage Gain. IEEE Transactions on Industrial Electronics, 2022, 69, 365-375.	5.2	5
83	Cloud Platform-Oriented Electrical Vehicle Abnormal Battery Cell Detection and Pack Consistency Evaluation With Big Data: Devising an Early-Warning System for Latent Risks. IEEE Industry Applications Magazine, 2022, 28, 44-55.	0.3	5
84	Relative Entropy based Lithium-ion Battery Pack Short Circuit Detection for Electric Vehicle. , 2020, , .		5
85	A Comparison Study of Compensation Topologies for Capacitive Power Transfer. , 2019, , .		4
86	High-dimensional data abnormity detection based on improved Variance-of-Angle (VOA) algorithm for electric vehicles battery. , 2019, , .		4
87	Electric Vehicle Charging Facility Planning Based on Flow Demand—A Case Study. Sustainability, 2021, 13, 4952.	1.6	4
88	Speed Planning for Autonomous Driving in Dynamic Urban Driving Scenarios. , 2020, , .		4
89	A Control Strategy for ZVS Realization in LCC-S Compensated WPT System with Semi Bridgeless Active Rectifier for Wireless EV Charging. , 2021, , .		4
90	Technical and economic analysis of pure-electric vehicles based on the life-cycle cost theory. , 2011, , .		3

#	Article	IF	CITATIONS
91	A Novel Control Method for A Primary Triple Bridges Dual Active Bridge DC-DC Converter with Minimum RMS Current Optimization. , 2020, , .		3
92	A Vehicle Rollover Prediction System Based on Lateral Load Transfer Ratio. , 2020, , .		3
93	Magnetic Coupler Robust Optimization Design for Electric Vehicle Wireless Charger Based on Improved Simulated Annealing Algorithm. Automotive Innovation, 2022, 5, 29-42.	3.1	3
94	Analysis of Multi-Pickup Inductive Power Transfer System with LCC Compensation for Maglev Train. , 2019, , .		2
95	Multi-Objective Optimization of Single-Transmitter Coupled Multi-Receiver IPT System for Maglev Trains. , 2020, , .		2
96	Influence of Tire Inflation Pressure on Vehicle Dynamics and Compensation Control on FWID Electric Vehicles. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2020, 142, .	0.9	2
97	A Detuned LCC-LCC Compensation Topology with Coupling Variation Resisting for EV Wireless Charger. , 2020, , .		2
98	A dynamic lane-changing trajectory planning scheme for autonomous vehicles on structured road. , 2020, , .		2
99	Study on control strategy of V2G in power peaking. , 2011, , .		1
100	A Real-Time Dynamic Trajectory Planning for Autonomous Driving Vehicles. , 2019, , .		1
101	The Technological Development of Domestic Li-ion Power Battery and Its Application on the Electric Vehicle. Journal of Asian Electric Vehicles, 2005, 3, 743-746.	0.4	1
102	Battery Fault Prognosis for Electric Vehicles Based on AOM-ARIMA-LSTM in Real Time. , 2022, , .		1
103	The Analysis of a Ferriteless Rectangular Coupler With Reactive Assistive shielding Coils For EV Wireless Charging. , 2019, , .		Ο
104	Multi-objective optimization of ground-side coils for dynamic wireless power transfer considering coupling variations. , 2022, , .		0