Shujuan Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3064180/publications.pdf Version: 2024-02-01

SHUULAN MENC

#	Article	IF	CITATIONS
1	Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer. Applied Energy, 2016, 181, 332-341.	5.1	151
2	The role of transparent exopolymer particles (TEP) in membrane fouling: A critical review. Water Research, 2020, 181, 115930.	5.3	128
3	Real-time monitoring of capacity loss for vanadium redox flow battery. Journal of Power Sources, 2018, 390, 261-269.	4.0	89
4	Intermolecular interactions of polysaccharides in membrane fouling during microfiltration. Water Research, 2018, 143, 38-46.	5.3	82
5	Ultrafiltration behaviors of alginate blocks at various calcium concentrations. Water Research, 2015, 83, 248-257.	5.3	76
6	An adaptive model for vanadium redox flow battery and its application for online peak power estimation. Journal of Power Sources, 2017, 344, 195-207.	4.0	67
7	Effect of magnesium ion on polysaccharide fouling. Chemical Engineering Journal, 2020, 379, 122351.	6.6	60
8	Alginate block fractions and their effects on membrane fouling. Water Research, 2013, 47, 6618-6627.	5.3	57
9	Reaction heterogeneity in the bridging effect of divalent cations on polysaccharide fouling. Journal of Membrane Science, 2022, 641, 119933.	4.1	48
10	Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling. Journal of Power Sources, 2018, 402, 252-262.	4.0	44
11	The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere, 2021, 268, 129364.	4.2	41
12	Transparent exopolymer particles (TEP) and their potential effect on membrane biofouling. Applied Microbiology and Biotechnology, 2013, 97, 5705-5710.	1.7	34
13	Bibliometric and content analysis on emerging technologies of hydrogen production using microbial electrolysis cells. International Journal of Hydrogen Energy, 2020, 45, 33310-33324.	3.8	32
14	Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	31
15	New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios. Scientific Reports, 2016, 6, 19747.	1.6	29
16	Transparent exopolymer particles (TEP)-associated membrane fouling at different Na+ concentrations. Water Research, 2017, 111, 52-58.	5.3	27
17	Membrane Fouling and Performance of Flat Ceramic Membranes in the Application of Drinking Water Purification. Water (Switzerland), 2019, 11, 2606.	1.2	21
18	Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1168, 122559.	1.2	21

Shujuan Meng

#	Article	IF	CITATIONS
19	Degradation of Polyamide Nanofiltration Membranes by Bromine: Changes of Physiochemical Properties and Filtration Performance. Environmental Science & Technology, 2021, 55, 6329-6339.	4.6	16
20	Environmental occurrence and risk assessment of haloacetic acids in swimming pool water and drinking water. RSC Advances, 2020, 10, 28267-28276.	1.7	14
21	Filtration Performances of Different Polysaccharides in Microfiltration Process. Processes, 2019, 7, 897.	1.3	13
22	Insights into the Fouling Propensities of Natural Derived Alginate Blocks during the Microfiltration Process. Processes, 2019, 7, 858.	1.3	12
23	Model-Based Condition Monitoring of a Vanadium Redox Flow Battery. Energies, 2019, 12, 3005.	1.6	8
24	A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T Water, 2021, 1, 2174-2185.	2.3	8
25	The role of iron present in water environment in degradation of polyamide membranes by free chlorine. Journal of Membrane Science, 2022, 651, 120458.	4.1	8
26	Exploration of a high-efficiency and low-cost technique for maximizing the glucoamylase production from food waste. RSC Advances, 2019, 9, 22980-22986.	1.7	7
27	Novel Surrogates for Membrane Fouling and the Application of Support Vector Machine in Analyzing Fouling Mechanism. Membranes, 2021, 11, 990.	1.4	5
28	Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting. Membranes, 2020, 10, 420.	1.4	4
29	The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes, 2021, 11, 922.	1.4	3