Malcolm M Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3064086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Learning from methylomes: epigenomic correlates of <i>Populus balsamifera</i> traits based on deep learning models of natural DNA methylation. Plant Biotechnology Journal, 2020, 18, 1361-1375.	4.1	11
2	Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Scientific Reports, 2017, 7, 45388.	1.6	59
3	Leaf size serves as a proxy for xylem vulnerability to cavitation in plantation trees. Plant, Cell and Environment, 2016, 39, 272-281.	2.8	24
4	Comprehensive multiphase NMR: a promising technology to study plants in their native state. Magnetic Resonance in Chemistry, 2015, 53, 735-744.	1.1	33
5	Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner. BMC Genomics, 2015, 16, 329.	1.2	60
6	Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree Physiology, 2014, 34, 1203-1219.	1.4	84
7	Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 2013, 3, 399-415.	0.8	271
8	Interplay between Sucrose and Folate Modulates Auxin Signaling in Arabidopsis. Plant Physiology, 2013, 162, 1552-1565.	2.3	71
9	Interactions between the R2R3-MYB Transcription Factor, AtMYB61, and Target DNA Binding Sites. PLoS ONE, 2013, 8, e65132.	1.1	35
10	Drought induces alterations in the stomatal development program in Populus. Journal of Experimental Botany, 2012, 63, 4959-4971.	2.4	83
11	Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. Plant Biotechnology Journal, 2012, 10, 1077-1087.	4.1	32
12	<i>At</i> MYB61, an R2R3â€MYB transcription factor, functions as a pleiotropic regulator via a small gene network. New Phytologist, 2012, 195, 774-786.	3.5	132
13	The interaction between MYB proteins and their target DNA binding sites. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 67-77.	0.9	155
14	Clone history shapes <i>Populus</i> drought responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12521-12526.	3.3	170
15	Transcriptomic Responses of the Softwood-Degrading White-Rot Fungus Phanerochaete carnosa during Growth on Coniferous and Deciduous Wood. Applied and Environmental Microbiology, 2011, 77, 3211-3218.	1.4	105
16	PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species Â. Plant Cell, 2011, 23, 895-910.	3.1	297
17	Genome-wide responses to drought in forest trees. Forestry, 2011, 84, 273-283.	1.2	105
18	Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cellular and Molecular Life Sciences, 2010, 67, 3763-3784.	2.4	111

MALCOLM M CAMPBELL

#	Article	IF	CITATIONS
19	Intraspecific variation in the <i>Populus balsamifera</i> drought transcriptome. Plant, Cell and Environment, 2010, 33, 1742-1755.	2.8	52
20	Time of day shapes Arabidopsis drought transcriptomes. Plant Journal, 2010, 63, 715-727.	2.8	113
21	Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant Journal, 2010, 64, 419-432.	2.8	53
22	Expansion and Diversification of the <i>Populus</i> R2R3-MYB Family of Transcription Factors Â. Plant Physiology, 2009, 149, 981-993.	2.3	450
23	The Wound-, Pathogen-, and Ultraviolet B-Responsive <i>MYB134</i> Gene Encodes an R2R3 MYB Transcription Factor That Regulates Proanthocyanidin Synthesis in Poplar Â. Plant Physiology, 2009, 150, 924-941.	2.3	249
24	Genotype and time of day shape the <i>Populus</i> drought response. Plant Journal, 2009, 60, 703-715.	2.8	123
25	Genes and nitrogen fuel wood formation. New Phytologist, 2009, 182, 783-785.	3.5	4
26	Postâ€ŧranslational modification of an R2R3â€MYB transcription factor by a MAP Kinase during xylem development. New Phytologist, 2009, 183, 1001-1013.	3.5	43
27	Varied growth, biomass and cellulose content in tobacco expressing yeast-derived invertases. Planta, 2006, 224, 1315-1327.	1.6	28
28	Comparison of lignin deposition in three ectopic lignification mutants. New Phytologist, 2005, 168, 123-140.	3.5	134
29	Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation. Plant Journal, 2005, 43, 348-355.	2.8	29
30	AtMYB61, an R2R3-MYB Transcription Factor Controlling Stomatal Aperture in Arabidopsis thaliana. Current Biology, 2005, 15, 1201-1206.	1.8	259
31	Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator Plants. Plant Cell, 2005, 17, 2089-2106.	3.1	152
32	Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany, 2005, 56, 1651-1663.	2.4	137
33	Functional interactions between a glutamine synthetase promoter and MYB proteins. Plant Journal, 2004, 39, 513-526.	2.8	80
34	The genetic control of lignin deposition during plant growth and development. New Phytologist, 2004, 164, 17-30.	3.5	333
35	The response of the poplar transcriptome to wounding and subsequent infection by a viral pathogen. New Phytologist, 2004, 164, 123-136.	3.5	76
36	Involvement of the R2R3â€MYB, <i>At</i> MYB61, in the ectopic lignification and darkâ€photomorphogenic components of the <i>det3</i> mutant phenotype. Plant Journal, 2004, 37, 239-250.	2.8	192

MALCOLM M CAMPBELL

#	Article	IF	CITATIONS
37	Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology, 2003, 53, 597-608.	2.0	132
38	A role for glycine in the gating of plant NMDA-like receptors. Plant Journal, 2003, 35, 800-810.	2.8	103
39	Characterisation of a pine MYB that regulates lignification. Plant Journal, 2003, 36, 743-754.	2.8	304
40	Forestry's fertile crescent: the application of biotechnology to forest trees. Plant Biotechnology Journal, 2003, 1, 141-154.	4.1	96
41	Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9693-9698.	3.3	321
42	Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant Journal, 1994, 6, 339-350.	2.8	321
43	Fungal Elicitor-Mediated Responses in Pine Cell Cultures. Plant Physiology, 1992, 98, 62-70.	2.3	47
44	Fungal elicitor-mediated responses in pine cell cultures. Planta, 1992, 186, 409-17.	1.6	122
45	Fungal elicitor-mediated responses in pine cell cultures: cell wall-bound phenolics*. Phytochemistry, 1992, 31, 737-742.	1.4	53