
Mary Kay H Pflum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063928/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Evidence that HDAC7 acts as an epigenetic "reader―of AR acetylation through NCoR-HDAC3 dissociation. Cell Chemical Biology, 2022, 29, 1162-1173.e5.	5.2	3
2	l â€Lactate Dehydrogenase Identified as a Protein Tyrosine Phosphatase 1B Substrate by Using Kâ€BIPS. ChemBioChem, 2021, 22, 186-192.	2.6	2
3	Differential profiles of HDAC1 substrates and associated proteins in breast cancer cells revealed by trapping. Molecular Omics, 2021, 17, 544-553.	2.8	7
4	An Affinityâ€Based, Cysteineâ€6pecific ATP Analog for Kinase atalyzed Crosslinking. Angewandte Chemie - International Edition, 2021, 60, 9859-9862.	13.8	5
5	An Affinityâ€Based, Cysteineâ€&pecific ATP Analog for Kinaseâ€Catalyzed Crosslinking. Angewandte Chemie, 2021, 133, 9947-9950.	2.0	2
6	EGFR phosphorylates HDAC1 to regulate its expression and anti-apoptotic function. Cell Death and Disease, 2021, 12, 469.	6.3	6
7	HDAC6 Substrate Discovery Using Proteomics-Based Substrate Trapping: HDAC6 Deacetylates PRMT5 to Influence Methyltransferase Activity. ACS Chemical Biology, 2021, 16, 1435-1444.	3.4	3
8	Kinase-Catalyzed Biotinylation to Map Cell Signaling Pathways: Application to Epidermal Growth Factor Signaling. Journal of Proteome Research, 2021, 20, 4852-4861.	3.7	3
9	A new class of cytotoxic agents targets tubulin and disrupts microtubule dynamics. Bioorganic Chemistry, 2021, 116, 105297.	4.1	6
10	In Search of Selectivity: Design, Synthesis, and Biological Evaluation of New Classes of HDAC Inhibitors. Proceedings (mdpi), 2019, 22, 63.	0.2	0
11	Optimal Substrateâ€Trapping Mutants to Discover Substrates of HDAC1. ChemBioChem, 2019, 20, 1444-1449.	2.6	3
12	Identification of PP1–Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Molecular Omics, 2018, 14, 121-133.	2.8	11
13	Kinase-catalyzed biotinylation of DNA. Bioorganic and Medicinal Chemistry, 2018, 26, 2331-2336.	3.0	3
14	The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity. European Journal of Medicinal Chemistry, 2018, 143, 1790-1806.	5.5	33
15	HDAC1 Substrate Profiling Using Proteomics-Based Substrate Trapping. ACS Chemical Biology, 2018, 13, 3315-3324.	3.4	22
16	Chitosan-assisted permeabilization of ATP–biotin for live cell kinase-catalyzed biotinylation. BioTechniques, 2018, 65, 143-148.	1.8	5
17	Identification of Kinases and Interactors of p53 Using Kinase-Catalyzed Cross-Linking and Immunoprecipitation. Journal of the American Chemical Society, 2018, 140, 16299-16310.	13.7	12
18	Structural Requirements of HDAC Inhibitors: SAHA Analogues Modified at the C2 Position Display HDAC6/8 Selectivity. ACS Medicinal Chemistry Letters, 2017, 8, 281-286.	2.8	35

Mary Kay H Pflum

#	Article	IF	CITATIONS
19	HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation. Cell Chemical Biology, 2017, 24, 481-492.e5.	5.2	31
20	The structural requirements of histone deacetylase inhibitors: SAHA analogs modified at the C5 position display dual HDAC6/8 selectivity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3254-3258.	2.2	16
21	Kâ€BILDS: A Kinase Substrate Discovery Tool. ChemBioChem, 2017, 18, 136-141.	2.6	14
22	LSD1 Substrate Binding and Gene Expression Are Affected by HDAC1-Mediated Deacetylation. ACS Chemical Biology, 2017, 12, 254-264.	3.4	38
23	Structural Requirements of Histone Deacetylase Inhibitors: SAHA Analogs Modified on the Hydroxamic Acid. Archiv Der Pharmazie, 2016, 349, 373-382.	4.1	9
24	K-CLASP: A Tool to Identify Phosphosite Specific Kinases and Interacting Proteins. ACS Chemical Biology, 2016, 11, 3251-3255.	3.4	17
25	Largazole Analogues Embodying Radical Changes in the Depsipeptide Ring: Development of a More Selective and Highly Potent Analogue. Journal of Medicinal Chemistry, 2016, 59, 10642-10660.	6.4	29
26	The generality of kinase-catalyzed biotinylation. Bioorganic and Medicinal Chemistry, 2016, 24, 12-19.	3.0	18
27	A Cellâ€Permeable ATP Analogue for Kinaseâ€Catalyzed Biotinylation. Angewandte Chemie - International Edition, 2015, 54, 9618-9621.	13.8	16
28	Development of an ELISA-Based HDAC Activity Assay for Characterization of Isoform-Selective Inhibitors. Journal of Biomolecular Screening, 2015, 20, 1277-1285.	2.6	17
29	A comparative study of ATP analogs for phosphorylation-dependent kinase–substrate crosslinking. Bioorganic and Medicinal Chemistry, 2014, 22, 1620-1625.	3.0	17
30	Mutagenesis Studies of the 14 Ã Internal Cavity of Histone Deacetylase 1: Insights toward the Acetate-Escape Hypothesis and Selective Inhibitor Design. Journal of Medicinal Chemistry, 2014, 57, 642-650.	6.4	43
31	Biotinylated Phosphoproteins from Kinaseâ€Catalyzed Biotinylation are Stable to Phosphatases: Implications for Phosphoproteomics. ChemBioChem, 2013, 14, 381-387.	2.6	19
32	The structural requirements of histone deacetylase inhibitors: Suberoylanilide hydroxamic acid analogs modified at the C6 position. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7084-7086.	2.2	23
33	Kinase atalyzed Biotinylation of Peptides, Proteins, and Lysates. Current Protocols in Chemical Biology, 2012, 4, 83-100.	1.7	6
34	Structural Analysis of ATP Analogues Compatible with Kinase-Catalyzed Labeling. Bioconjugate Chemistry, 2012, 23, 2386-2391.	3.6	13
35	The structural requirements of histone deacetylase inhibitors: Suberoylanilide hydroxamic acid analogs modified at the C3 position display isoform selectivity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6139-6142.	2.2	26
36	A histone deacetylase-dependent screen in yeast. Bioorganic and Medicinal Chemistry, 2010, 18, 7586-7592.	3.0	4

Mary Kay H Pflum

#	Article	IF	CITATIONS
37	Phosphorylationâ€Dependent Kinase–Substrate Crossâ€Linking. Angewandte Chemie - International Edition, 2010, 49, 1627-1630.	13.8	49
38	Exploring Kinase Cosubstrate Promiscuity: Monitoring Kinase Activity through Dansylation. ChemBioChem, 2009, 10, 234-237.	2.6	33
39	Synthesis and biological evaluation of histone deacetylase inhibitors that are based on FR235222: A cyclic tetrapeptide scaffold. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2549-2554.	2.2	21
40	Stereochemistry of 1,2-elimination reactions at the E2–E1cB interface—tert-butyl 3-tosyloxybutanoate and its thioester. Organic and Biomolecular Chemistry, 2008, 6, 1641.	2.8	11
41	Isoform-selective histone deacetylase inhibitors. Chemical Society Reviews, 2008, 37, 1402.	38.1	295
42	Residues in the 11 Ã Channel of Histone Deacetylase 1 Promote Catalytic Activity: Implications for Designing Isoform-Selective Histone Deacetylase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 5542-5551.	6.4	50
43	Histone deacetylase 1 phosphorylation at S421 and S423 is constitutive in vivo, but dispensable in vitro. Biochemical and Biophysical Research Communications, 2007, 361, 349-355.	2.1	15
44	Kinase-Catalyzed Biotinylation for Phosphoprotein Detection. Journal of the American Chemical Society, 2007, 129, 10-11.	13.7	103
45	Structural requirements of HDAC inhibitors: SAHA analogs functionalized adjacent to the hydroxamic acid. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2216-2219.	2.2	46
46	Phosphopeptide Modification and Enrichment by Oxidation–Reduction Condensation. ACS Chemical Biology, 2006, 1, 697-701.	3.4	22
47	Cyclic AMP Response Element-Binding Protein (CREB) and CAAT/Enhancer-Binding Protein β (C/EBPβ) Bind Chimeric DNA Sites with High Affinityâ€. Biochemistry, 2006, 45, 9615-9623.	2.5	19
48	Limited proteolysis of human histone deacetylase 1. BMC Biochemistry, 2006, 7, 22.	4.4	7
49	H-NS gives invading DNA the silent treatment. , 2006, 2, 400-401.		4
50	Grafting Miniature DNA Binding Proteins. Chemistry and Biology, 2004, 11, 3-4.	6.0	4
51	Hepatitis B Virus X Protein Activates Transcription by Bypassing CREB Phosphorylation, Not by Stabilizing bZIPâ^'DNA Complexesâ€. Biochemistry, 2001, 40, 693-703.	2.5	10
52	Histone Deacetylase 1 Phosphorylation Promotes Enzymatic Activity and Complex Formation. Journal of Biological Chemistry, 2001, 276, 47733-47741.	3.4	220