Péter Bakó

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063860/publications.pdf

Version: 2024-02-01

66 papers

1,536 citations

257450 24 h-index 330143 37 g-index

70 all docs $\begin{array}{c} 70 \\ \text{docs citations} \end{array}$

70 times ranked 762 citing authors

#	Article	IF	CITATIONS
1	Asymmetric C–C bond forming reactions with chiral crown catalysts derived from d-glucose and d-galactose. Tetrahedron: Asymmetry, 1999, 10, 4539-4551.	1.8	87
2	Asymmetric C-C Bond Forming Reactions by Chiral Crown Catalysts; Darzens Condensation and Nitroalkane Addition to the Double Bond. Synlett, 1997, 1997, 291-292.	1.8	70
3	Chiral azacrown ethers derived from D-glucose as catalysts for enantioselective Michael addition. Tetrahedron Letters, 1997, 38, 7259-7262.	1.4	63
4	Synthesis of d-mannose-based azacrown ethers and their application in enantioselective reactions. Tetrahedron: Asymmetry, 2005, 16 , $1861-1871$.	1.8	61
5	Phase-transfer catalyzed asymmetric epoxidation of chalcones using chiral crown ethers derived from d-glucose, d-galactose, and d-mannitol. Tetrahedron: Asymmetry, 2004, 15, 1589-1595.	1.8	58
6	d-Glucose-based azacrown ethers with a phosphonoalkyl side chain: application as enantioselective phase transfer catalysts. Tetrahedron: Asymmetry, 1999, 10, 2373-2380.	1.8	56
7	Enantioselective Michael reaction of 2-nitropropane with substituted chalcones catalysed by chiral azacrown ethers derived from α-d-glucose. Tetrahedron: Asymmetry, 2002, 13, 203-209.	1.8	52
8	Synthesis, extraction ability and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Tetrahedron, 1998, 54, 14975-14988.	1.9	51
9	Synthesis and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Chemical Communications, 1998, , 1193-1194.	4.1	51
10	Enantioselective Michael addition of 2-nitropropane to chalcone analogues catalyzed by chiral azacrown ethers based on î±-d-glucose and d-mannitol. Tetrahedron: Asymmetry, 2003, 14, 1917-1923.	1.8	46
11	Asymmetric epoxidation of substituted chalcones and chalcone analogues catalyzed by α-d-glucose- and α-d-mannose-based crown ethers. Tetrahedron: Asymmetry, 2010, 21, 919-925.	1.8	46
12	Asymmetric Michael addition and deracemization of enolate by chiral crown ether. Tetrahedron, 1998, 54, 213-222.	1.9	44
13	Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Letters, 2011, 52, 1473-1476.	1.4	43
14	Synthesis of novel chiral crown ethers derived from D-glucose and their application to an enantioselective Michael reaction. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3651-3655.	0.9	42
15	Asymmetric phase transfer Darzens reactions catalyzed by d-glucose- and d-mannose-based chiral crown ethers. Tetrahedron: Asymmetry, 2012, 23, 489-496.	1.8	39
16	Phase Transfer Catalysed Asymmetric Epoxidation of Chalcones Using Chiral Crown Ethers Derived fromd-Glucose andd-Mannose. Synlett, 2004, 2004, 643-646.	1.8	37
17	Enantioselective synthesis of heteroaromatic epoxyketones under phase-transfer catalysis using d-glucose- and d-mannose-based crown ethers. Tetrahedron: Asymmetry, 2011, 22, 1189-1196.	1.8	34
18	Asymmetric Michael Addition of Malonates to Enones Catalyzed by an α-d-Glucopyranoside-Based Crown Ether. Synlett, 2015, 26, 1847-1851.	1.8	33

#	Article	IF	CITATIONS
19	Synthesis and characterization of biobased epoxy monomers derived from d-glucose. European Polymer Journal, 2015, 67, 375-382.	5.4	32
20	Enantioselective Michael addition of malonates to aromatic nitroalkenes catalyzed by monosaccharide-based chiral crown ethers. Tetrahedron: Asymmetry, 2014, 25, 141-147.	1.8	31
21	Asymmetric Phase Transfer Reactions Catalyzed by Chiral Crown Ethers Derived from Monosaccharides. Letters in Organic Chemistry, 2010, 7, 645-656.	0.5	30
22	The Enantiomeric Differentiation Ability of Chiral Crown Ethers Based on Carbohydrates. Current Organic Chemistry, 2012, 16, 297-304.	1.6	30
23	Asymmetric Synthesis of Substituted α-Amino Phosphonates with Chiral Crown Ethers as Catalysts. Synlett, 2009, 2009, 1429-1432.	1.8	29
24	Asymmetric Michael Addition Catalyzed by d-Glucose-based Azacrown Ethers. Synlett, 2001, 2001, 0424-0426.	1.8	27
25	Synthesis of methyl- \hat{l} ±-d-glucopyranoside-based azacrown ethers and their application in enantioselective reactions. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2008, 139, 525-535.	1.8	24
26	Theoretical study of the asymmetric phase-transfer mediated epoxidation of chalcone catalyzed by chiral crown ethers derived from monosaccharides. Journal of Molecular Structure, 2008, 892, 336-342.	3.6	24
27	Synthesis of chiral crown ethers derived from d-galactose and their application in enantioselective reactions. Tetrahedron, 2019, 75, 3993-4004.	1.9	24
28	Synthesis of \hat{l}_{\pm} -d-galactose-based azacrown ethers and their application as enantioselective catalysts in Michael reactions. New Journal of Chemistry, 2016, 40, 7856-7865.	2.8	23
29	Crown ether derived from d-glucose as an efficient phase-transfer catalyst for the enantioselective Michael addition of malonates to enones. Tetrahedron: Asymmetry, 2016, 27, 960-972.	1.8	22
30	Catalytic Asymmetric Darzens Reactions. Current Organic Synthesis, 2014, 11, 361-376.	1.3	22
31	Asymmetric cyclopropanation reactions catalyzed by carbohydrate-based crown ethers. Tetrahedron, 2018, 74, 3512-3526.	1.9	21
32	Synthesis of <scp>d</scp> â€mannitolâ€based crown ethers and their application as catalyst in asymmetric phase transfer reactions. Chirality, 2018, 30, 407-419.	2.6	20
33	Alkali Metal- and Ammonium Picrate Extraction and Complex Forming Capabilities of d-Glucose and d-Mannose-based Lariat Ethers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 295-302.	1.6	17
34	Synthesis of <scp>l</scp> â€threitolâ€based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions. Chirality, 2017, 29, 257-272.	2.6	17
35	Synthesis of alkyl \hat{l}_{\pm} - and \hat{l}^2 -d-glucopyranoside-based chiral crown ethers and their application as enantioselective phase-transfer catalysts. Research on Chemical Intermediates, 2018, 44, 1627-1645.	2.7	16
36	Asymmetric Michael addition of 2-nitropropane to a chalcone catalyzed by chiral crown ethers incorporating a D-glucose unit. Heteroatom Chemistry, 1997, 8, 333-337.	0.7	15

#	Article	IF	CITATIONS
37	Enantioselective cyclopropanation of conjugated cyanosulfones using carbohydrate-based crown ether catalysts. Tetrahedron, 2020, 76, 130965.	1.9	15
38	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40, 207-212.	1.6	14
39	Synthesis and recognition properties of α-d-glucose-based fluorescent crown ethers incorporating an acridine unit. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 253-261.	1.6	14
40	Sideâ€Arm Effect of a Methyl αâ€ <scp>d</scp> â€Glucopyranoside Based Lariat Ether Catalysts in Asymmetric Syntheses. Heteroatom Chemistry, 2015, 26, 63-71.	0.7	14
41	Synthesis of L-arabinose-based crown ethers and their applications as enantioselective phase transfer catalysts. Arkivoc, 2013, 2012, 36-48.	0.5	14
42	Synthesis of ribo-hexopyranoside- and altrose-based azacrown ethers and their application in an asymmetric Michael addition. Carbohydrate Research, 2013, 365, 61-68.	2.3	13
43	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39, 247-251.	1.6	12
44	Synthesis of an Aza Chiral Crown Ether Grafted to Nanofibrous Silica Support and Application in Asymmetric Michael Addition. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 713-721.	3.7	12
45	Enantioselective synthesis of substituted \hat{l} ±-aminophosphonates catalysed by d-glucose-based crown ethers: pursuit of the origin of stereoselectivity. New Journal of Chemistry, 2017, 41, 14945-14953.	2.8	11
46	Synthesis and application of novel carbohydrate-based ammonium and triazolium salts. Synthetic Communications, 2019, 49, 2388-2400.	2.1	9
47	Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses. Chemistry, 2021, 3, 550-577.	2.2	9
48	Sugar-based Crown Ethers in Enantioselective Syntheses. Periodica Polytechnica: Chemical Engineering, 2015, 59, 51-58.	1.1	8
49	Synthesis of chiral pyridino-15-crown-5 type ligands containing $\hat{l}\pm$ -D-hexapyranoside unit and their application in asymmetric synthesis. Arkivoc, 2009, 2009, 165-179.	0.5	8
50	Diethyl (cyanofluoromethyl)phosphonate: Application in catalytic enantioselective Michael additions. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 659-664.	1.6	7
51	Synthesis of xylal―and arabinalâ€based crown ethers and their application as asymmetric phase transfer catalysts. Chirality, 2020, 32, 107-119.	2.6	7
52	Enantioselective Phase Transfer Catalytic Reactions. A Comparative Study on the Use of Cinchonidine Salts and Glucose-Based Lariat Ethers Including Phosphinoxidomethyl Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 182, 2449-2456.	1.6	6
53	Circular dichroism spectra of trans-chalcone epoxides. Tetrahedron: Asymmetry, 2007, 18, 1521-1528.	1.8	5
54	The Synthesis of Hydrobenzoin-Based Monoaza Crown Ethers and Their Application as Recyclable Enantioselective Catalysts. Catalysis Letters, 2020, 150, 930-938.	2.6	5

#	Article	IF	CITATIONS
55	Enantioselective Michael Addition of Malonates to Enones. Current Organic Chemistry, 2020, 24, 746-773.	1.6	5
56	Synthesis of Novel Crown Ether-Squaramides and Their Application as Phase-Transfer Catalysts. Molecules, 2021, 26, 6542.	3.8	4
57	Syntheses and complexing ability of \hat{l} ±-d-gluco- and \hat{l} ±-d-xylofuranoside-based lariat ethers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 19-32.	1.6	3
58	Synthesis of Methyl 4,6-Di-O-ethyl- \hat{l}_{\pm} -d-glucopyranoside-Based Azacrown Ethers and Their Effects in Asymmetric Reactions. Molecules, 2021, 26, 4668.	3.8	2
59	Phase Transfer Catalyzed Asymmetric Epoxidation of Chalcones Using Chiral Crown Ethers Derived from D-Glucose, D-Galactose, and D-Mannitol ChemInform, 2004, 35, no.	0.0	1
60	The Synthesis of Bioâ€Based Flameâ€Retarded Epoxyâ€Precursors. Macromolecular Symposia, 2015, 352, 46-50.	0.7	1
61	The Synthesis and Utilization of Azacrown Ethers with Phosphorus Function in the Side Chain. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1995-1995.	1.6	O
62	Enantioselective Michael Addition of 2-Nitropropane to Chalcone Analogues Catalyzed by Chiral Azacrown Ethers Based on \hat{l}_{\pm} -D-Glucose and D-Mannitol ChemInform, 2003, 34, no.	0.0	0
63	Synthesis of D-Mannose-Based Azacrown Ethers and Their Application in Enantioselective Reactions ChemInform, 2005, 36, no.	0.0	O
64	Synthesis of D-Mannose-Based Azacrown Ethers and Their Application in Enantioselective Reactions ChemInform, 2005, 36, no.	0.0	0
65	Crystal structure of diethyl 2-acetoxy-2-[3-(4-nitrophenyl)-3-oxo-1-phenylpropyl]malonate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 257-260.	0.5	O
66	Crystal structure of diethyl 3-(3-chlorophenyl)-2,2-dicyanocyclopropane-1,1-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 253-256.	0.5	0