Ke-De Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063390/publications.pdf Version: 2024-02-01

KE-DE LIU

#	Article	IF	CITATIONS
1	Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6, 34-45.	9.3	449
2	The highâ€quality genome of <i>Brassica napus</i> cultivar â€~ <scp>ZS</scp> 11' reveals the introgression history in semiâ€winter morphotype. Plant Journal, 2017, 92, 452-468.	5.7	233
3	CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific Reports, 2017, 7, 7489.	3.3	164
4	Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theoretical and Applied Genetics, 2009, 118, 1121-1131.	3.6	157
5	Disruption of a <i><scp>CAROTENOID CLEAVAGE DIOXYGENASE</scp> 4</i> gene converts flower colour from white to yellow in <i>Brassica</i> species. New Phytologist, 2015, 206, 1513-1526.	7.3	155
6	Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2012, 125, 285-296.	3.6	107
7	Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theoretical and Applied Genetics, 2010, 121, 1289-1301.	3.6	99
8	Dissection of the genetic architecture of three seedâ€quality traits and consequences for breeding in <i>Brassica napus</i> . Plant Biotechnology Journal, 2018, 16, 1336-1348.	8.3	91
9	An auxin signaling gene <i>BnaA3</i> . <i><scp>IAA</scp>7</i> contributes to improved plant architecture and yield heterosis in rapeseed. New Phytologist, 2019, 222, 837-851.	7.3	80
10	Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics, 2010, 11, 594.	2.8	78
11	A <scp>CACTA</scp> â€like transposable element in the upstream region of <i>BnaA9</i> . <i><scp>CYP</scp>78A9</i> acts as an enhancer to increase silique length and seed weight in rapeseed. Plant Journal, 2019, 98, 524-539.	5.7	77
12	A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theoretical and Applied Genetics, 2010, 121, 249-258.	3.6	75
13	Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Molecular Breeding, 2011, 28, 585-596.	2.1	73
14	BnaC9.SMG7b functions as a positive regulator of number of seeds per silique in rapeseed (Brassica) Tj ETQq0 0 pp.01040.2015.	0 rgBT /Ov 4.8	verlock 10 Tf 70
15	Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus. BMC Genomics, 2013, 14, 346.	2.8	69
16	Roles of the Brassica napus DELLA Protein BnaA6.RGA, in Modulating Drought Tolerance by Interacting With the ABA Signaling Component BnaA10.ABF2. Frontiers in Plant Science, 2020, 11, 577.	3.6	66
17	Evaluation of Linkage Disequilibrium Pattern and Association Study on Seed Oil Content in Brassica napus Using ddRAD Sequencing. PLoS ONE, 2016, 11, e0146383.	2.5	63
18	Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theoretical and Applied Genetics, 2017, 130, 727-741.	3.6	62

Ke-De Liu

#	Article	IF	CITATIONS
19	A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods, 2017, 13, 7.	4.3	59
20	Development and Validation of an Effective CRISPR/Cas9 Vector for Efficiently Isolating Positive Transformants and Transgene-Free Mutants in a Wide Range of Plant Species. Frontiers in Plant Science, 2018, 9, 1533.	3.6	52
21	BnPIR: <i>Brassica napus</i> panâ€genome information resource for 1689 accessions. Plant Biotechnology Journal, 2021, 19, 412-414.	8.3	51
22	Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. Theoretical and Applied Genetics, 2019, 132, 1435-1449.	3.6	47
23	Longâ€read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnology Journal, 2021, 19, 240-250.	8.3	45
24	Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in <i>Brassica napus</i> using a genome-walking technique. Genome, 2007, 50, 611-618.	2.0	44
25	Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theoretical and Applied Genetics, 2015, 128, 107-118.	3.6	41
26	Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2013, 126, 937-947.	3.6	40
27	Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napus. BMC Genetics, 2020, 21, 52.	2.7	33
28	Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). BMC Plant Biology, 2017, 17, 204.	3.6	32
29	Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. Journal of Experimental Botany, 2020, 71, 4729-4741.	4.8	32
30	An <i>Arabidopsis</i> mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4. Journal of Experimental Botany, 2015, 66, 6431-6445.	4.8	31
31	Genome structural evolution in Brassica crops. Nature Plants, 2021, 7, 757-765.	9.3	31
32	High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (<i>Brassica napus</i> L.). Breeding Science, 2017, 67, 296-306.	1.9	29
33	Genetic Properties of a Nested Association Mapping Population Constructed With Semi-Winter and Spring Oilseed Rapes. Frontiers in Plant Science, 2018, 9, 1740.	3.6	29
34	Highâ€throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed. Plant Biotechnology Journal, 2020, 18, 2345-2353.	8.3	29
35	Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in both Arabidopsis and tobacco. Plant Cell, Tissue and Organ Culture, 2012, 109, 419-428.	2.3	25
36	Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus. BMC Plant Biology, 2018, 18, 32.	3.6	24

Ke-De Liu

#	Article	IF	CITATIONS
37	Development of INDELs markers in oilseed rape (Brassica napus L.) using re-sequencing data. Molecular Breeding, 2016, 36, 1.	2.1	20
38	Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice. Molecular Breeding, 2006, 19, 59-68.	2.1	17
39	Abundance, marker development and genetic mapping of microsatellites from unigenes in Brassica napus. Molecular Breeding, 2012, 30, 731-744.	2.1	15
40	DELLA proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in <i>Brassica napus</i> . Plant Biotechnology Journal, 2021, 19, 2011-2026.	8.3	15
41	Genomeâ€wide expression quantitative trait locus analysis in a recombinant inbred line population for trait dissection in peanut. Plant Biotechnology Journal, 2020, 18, 779-790.	8.3	14
42	Genetic mapping of quantitative trait loci and a major locus for resistance to grey leaf spot in maize. Theoretical and Applied Genetics, 2020, 133, 2521-2533.	3.6	14
43	Identification of quantitative trait loci associated with oil content and development of near isogenic lines for stable qOC-A10 in Brasscia napus L Canadian Journal of Plant Science, 2016, 96, 423-432.	0.9	8
44	Development of transgenic <i>Brassica napus</i> with an optimized <i>cry1C</i> * gene for resistance to diamondback moth (<i>Plutella xylostella</i>). Canadian Journal of Plant Science, 2014, 94, 1501-1506.	0.9	7
45	A lignified-layer bridge controlled by a single recessive gene is associated with high pod-shatter resistance in Brassica napus L. Crop Journal, 2022, 10, 638-646.	5.2	6
46	AtRabD2b, a Functional Ortholog of the Yeast Ypt1, Controls Various Growth and Developmental Processes in Arabidopsis. Plant Molecular Biology Reporter, 2012, 30, 275-285.	1.8	5
47	A comprehensive and precise set of intervarietal substitution lines to identify candidate genes and quantitative trait loci in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2018, 131, 2117-2129.	3.6	5
48	A Chromosome Level Genome Assembly of a Winter Turnip Rape (Brassica rapa L.) to Explore the Genetic Basis of Cold Tolerance. Frontiers in Plant Science, 0, 13, .	3.6	4