List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063380/publications.pdf Version: 2024-02-01

TENCCHUAN IIN

#	Article	IF	CITATIONS
1	SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Review of Vaccines, 2022, 21, 69-81.	2.0	22
2	Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY. International Journal of Biological Macromolecules, 2022, 194, 42-49.	3.6	2
3	Crystal Structure Analysis and IgE Epitope Mapping of Allergic Predominant Region in <i>Scylla paramamosain</i> Filamin C, Scy p 9. Journal of Agricultural and Food Chemistry, 2022, 70, 1282-1292.	2.4	5
4	Detection of Circulating VZV-Glycoprotein E-Specific Antibodies by Chemiluminescent Immunoassay (CLIA) for Varicella–Zoster Diagnosis. Pathogens, 2022, 11, 66.	1.2	3
5	IgNAR antibody: Structural features, diversity and applications. Fish and Shellfish Immunology, 2022, 121, 467-477.	1.6	12
6	Ultrapotent neutralizing antibodies against SARS-CoV-2 with a high degree of mutation resistance. Journal of Clinical Investigation, 2022, 132, .	3.9	14
7	3-dose of RBD vaccine is sufficient to elicit a long-lasting memory response against SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2022, 7, 84.	7.1	4
8	SARS-CoV-2 nucleocapsid protein: Importance in viral infection. , 2022, 52, 1.		1
9	Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A systematic review and metaâ€analysis. Reviews in Medical Virology, 2021, 31, e2181.	3.9	57
10	Re-detectable positive SARS-CoV-2 RNA tests in patients who recovered from COVID-19 with intestinal infection. Protein and Cell, 2021, 12, 230-235.	4.8	36
11	An overview of disease models for NLRP3 inflammasome over-activation. Expert Opinion on Drug Discovery, 2021, 16, 429-446.	2.5	10
12	Predictive effects of IgA and IgG combination to assess pulmonary exudation progression in COVIDâ€19 patients. Journal of Medical Virology, 2021, 93, 1443-1448.	2.5	13
13	Decline of SARS-CoV-2-specific IgG, IgM and IgA in convalescent COVID-19 patients within 100 days after hospital discharge. Science China Life Sciences, 2021, 64, 482-485.	2.3	27
14	Characterization of SARS-CoV-2-specific antibodies in COVID-19 patients reveals highly potent neutralizing IgA. Signal Transduction and Targeted Therapy, 2021, 6, 35.	7.1	44
15	Homotypic CARD-CARD interaction is critical for the activation of NLRP1 inflammasome. Cell Death and Disease, 2021, 12, 57.	2.7	10
16	Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Research, 2021, 49, 2959-2972.	6.5	11
17	Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Toxins, 2021, 13, 128.	1.5	21
18	Potent Neutralization of SARS-CoV-2 by Hetero-Bivalent Alpaca Nanobodies Targeting the Spike Receptor-Binding Domain. Journal of Virology, 2021, 95, .	1.5	46

#	Article	IF	CITATIONS
19	Case Report: Novel SAVI-Causing Variants in STING1 Expand the Clinical Disease Spectrum and Suggest a Refined Model of STING Activation. Frontiers in Immunology, 2021, 12, 636225.	2.2	18
20	Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Frontiers in Chemistry, 2021, 9, 622898.	1.8	213
21	Potent Molecular Feature-based Neutralizing Monoclonal Antibodies as Promising Therapeutics Against SARS-CoV-2 Infection. Frontiers in Molecular Biosciences, 2021, 8, 670815.	1.6	17
22	Type I collagen from sea cucumber (Stichopus japonicus) and the role of matrix metalloproteinase-2 in autolysis. Food Bioscience, 2021, 41, 100959.	2.0	11
23	Identification of a Novel Major Allergen in Buckwheat Seeds: Fag t 6. Journal of Agricultural and Food Chemistry, 2021, 69, 13315-13322.	2.4	9
24	Epidemiological, Clinical and Laboratory Characteristics of Patients with Brucella Infection in Anhui Province, China. Infection and Drug Resistance, 2021, Volume 14, 2741-2752.	1.1	7
25	Pulling-Force Spinning Top for Serum Separation Combined with Paper-Based Microfluidic Devices in COVID-19 ELISA Diagnosis. ACS Sensors, 2021, 6, 2709-2719.	4.0	44
26	The Potential Role of an Aberrant Mucosal Immune Response to SARS-CoV-2 in the Pathogenesis of IgA Nephropathy. Pathogens, 2021, 10, 881.	1.2	10
27	ASC deglutathionylation is a checkpoint for NLRP3 inflammasome activation. Journal of Experimental Medicine, 2021, 218, .	4.2	25
28	Novel Monoclonal Antibodies and Recombined Antibodies Against Variant SARS-CoV-2. Frontiers in Immunology, 2021, 12, 715464.	2.2	11
29	Profiling CD8+ TÂcell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Reports, 2021, 36, 109708.	2.9	42
30	Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads. Sensors and Actuators B: Chemical, 2021, 349, 130739.	4.0	24
31	Updates of Pathogenesis, Diagnostic and Therapeutic Perspectives for Ovarian Clear Cell Carcinoma. Journal of Cancer, 2021, 12, 2295-2316.	1.2	26
32	Site-Directed Mutations of Calcium-Binding Sites Contribute to Reducing the Immunoreactivity of the EF-Hand Sarcoplasmic Calcium-Binding Protein in <i>Scylla paramamosain</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 428-436.	2.4	14
33	Clinical and Laboratory Characteristics of Patients infected by Listeria monocytogenes at a Tertiary Hospital in Hefei City, China. Infection and Drug Resistance, 2021, Volume 14, 4409-4419.	1.1	3
34	Label-Free Immunoassay for Sensitive and Rapid Detection of the SARS-CoV-2 Antigen Based on Functionalized Magnetic Nanobeads with Chemiluminescence and Immunoactivity. Analytical Chemistry, 2021, 93, 14238-14246.	3.2	34
35	Generation, biochemical characterizations and validation of potent nanobodies derived from alpaca specific for human receptor of advanced glycation end product. Biochemical and Biophysical Research Communications, 2021, 581, 38-45.	1.0	2
36	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Seminars in Immunology, 2021, 55, 101533.	2.7	72

#	Article	IF	CITATIONS
37	Molecular and structural aspects of gasdermin family pores and insights into gasdermin-elicited programmed cell death. Biochemical Society Transactions, 2021, 49, 2697-2710.	1.6	15
38	Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Frontiers in Microbiology, 2021, 12, 809412.	1.5	6
39	Structure determination of CAMP factor of Mobiluncus curtisii and insights into structural dynamics. International Journal of Biological Macromolecules, 2020, 150, 1027-1036.	3.6	7
40	Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity. International Journal of Biological Macromolecules, 2020, 154, 1303-1313.	3.6	12
41	Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Medicine in Microecology, 2020, 5, 100023.	0.7	112
42	Crystal structure of caspase-11 CARD provides insights into caspase-11 activation. Cell Discovery, 2020, 6, 70.	3.1	14
43	Characterization and crystal structure of prolyl endopeptidase from abalone (Haliotis discus) Tj ETQq1 1 0.784	314 rgBT /0 4:2	Overlock 10
44	Recent insights into the regulatory networks of NLRP3 inflammasome activation. Journal of Cell Science, 2020, 133, .	1.2	55
45	Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nature Communications, 2020, 11, 3924.	5.8	180
46	Atomic-resolution structures of type I ribosome inactivating protein alpha-momorcharin with different substrate analogs. International Journal of Biological Macromolecules, 2020, 164, 265-276.	3.6	2
47	Epigenetic Input Dictates the Threshold of Targeting of the Integrin-Dependent Pathway in Non-small Cell Lung Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 652.	1.8	10
48	Molecular and Structural Basis of DNA Sensors in Antiviral Innate Immunity. Frontiers in Immunology, 2020, 11, 613039.	2.2	54
49	Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nature Cell Biology, 2020, 22, 716-727.	4.6	70
50	Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduction and Targeted Therapy, 2020, 5, 67.	7.1	83
51	Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and Biophysical Research Communications, 2020, 527, 618-623.	1.0	383
52	Serum IgA, IgM, and IgG responses in COVID-19. Cellular and Molecular Immunology, 2020, 17, 773-775.	4.8	379
53	Asymptomatic patients and asymptomatic phases of Coronavirus Disease 2019 (COVID-19): a population-based surveillance study. National Science Review, 2020, 7, 1527-1539.	4.6	16
54	A Low Viral Dose in COVID-19 Patient: A Case Report. Frontiers in Public Health, 2020, 8, 339.	1.3	3

#	Article	IF	CITATIONS
55	Almond allergens: update and perspective on identification and characterization. Journal of the Science of Food and Agriculture, 2020, 100, 4657-4663.	1.7	16
56	Characteristics of patients with coronavirus disease (COVIDâ€19) confirmed using an IgMâ€IgG antibody test. Journal of Medical Virology, 2020, 92, 2004-2010.	2.5	154
57	Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Frontiers in Public Health, 2020, 8, 552028.	1.3	193
58	Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Frontiers in Pharmacology, 2020, 11, 630500.	1.6	32
59	Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. Journal of Clinical Investigation, 2020, 130, 6588-6599.	3.9	128
60	Integrin-associated CD151 is a suppressor of prostate cancer progression. American Journal of Translational Research (discontinued), 2020, 12, 1428-1442.	0.0	1
61	Crystal structure determination of Scylla paramamosain arginine kinase, an allergen that may cause cross-reactivity among invertebrates. Food Chemistry, 2019, 271, 597-605.	4.2	15
62	Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 2019, 67, 11219-11229.	2.4	20
63	Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. International Journal of Biological Macromolecules, 2019, 138, 394-402.	3.6	16
64	Almond (<i>Prunus dulcis</i>) Allergen Pru du 8, the First Member of a New Family of Food Allergens. Journal of Agricultural and Food Chemistry, 2019, 67, 8626-8631.	2.4	15
65	Biochemical characterization of G64W mutant of acidic beta-crystallin 4. Experimental Eye Research, 2019, 186, 107712.	1.2	5
66	X-ray crystal structure of putative transcription regulator Imo2088 from Listeria monocytogenes. Biochemical and Biophysical Research Communications, 2019, 520, 434-440.	1.0	5
67	Crystal Structure Analysis and Conformational Epitope Mutation of Triosephosphate Isomerase, a Mud Crab Allergen. Journal of Agricultural and Food Chemistry, 2019, 67, 12918-12926.	2.4	18
68	Pharmacological Inhibitors of the NLRP3 Inflammasome. Frontiers in Immunology, 2019, 10, 2538.	2.2	436
69	Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nature Communications, 2019, 10, 4206.	5.8	21
70	Crystal structure and activation mechanism of DR3 death domain. FEBS Journal, 2019, 286, 2593-2610.	2.2	6
71	Structure determination of the CAMP factor of <i>Streptococcus agalactiae</i> with the aid of an MBP tag and insights into membrane-surface attachment. Acta Crystallographica Section D: Structural Biology, 2019, 75, 772-781.	1.1	7
72	A comprehensive analysis of the allergenicity and IgE epitopes of myosinogen allergens in <i>Scylla paramamosain</i> . Clinical and Experimental Allergy, 2019, 49, 108-119.	1.4	28

#	Article	IF	CITATIONS
73	Nucleus-translocated matrix metalloprotease 1 regulates innate immune response in Pacific abalone (Haliotis discus hannai). Fish and Shellfish Immunology, 2019, 84, 290-298.	1.6	9
74	Structures of RIG-I-Like Receptors and Insights into Viral RNA Sensing. Advances in Experimental Medicine and Biology, 2019, 1172, 157-188.	0.8	20
75	High-resolution crystal structure of <i>Streptococcus agalactiae</i> glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 236-244.	0.4	5
76	Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends in Immunology, 2018, 39, 393-406.	2.9	158
77	Involvement of clip-domain serine protease in the anti-Vibrio immune response of abalone (Haliotis) Tj ETQq1 1 (Immunology, 2018, 72, 210-219.).784314 1.6	rgBT /Overlo 8
78	Signal peptide represses GluK1 surface and synaptic trafficking through binding to amino-terminal domain. Nature Communications, 2018, 9, 4879.	5.8	15
79	Functional and structural characterization of zebrafish ASC. FEBS Journal, 2018, 285, 2691-2707.	2.2	25
80	Crystal structure of the Streptococcus agalactiae CAMP factor provides insights into its membrane-permeabilizing activity. Journal of Biological Chemistry, 2018, 293, 11867-11877.	1.6	14
81	Characterization of a recombinant matrix metalloproteinase-2 from sea cucumber (Stichopus) Tj ETQq1 1 0.784 72, 63-70.	314 rgBT 1.8	/Overlock 10 6
82	Purification, Characterization, and Crystal Structure of Parvalbumins, the Major Allergens in <i>Mustelus griseus</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 8150-8159.	2.4	2
83	Crystal structure of human NLRP12 PYD domain and implication in homotypic interaction. PLoS ONE, 2018, 13, e0190547.	1.1	9
84	High-Level Prokaryotic Expression and Purification of Death Domain Superfamily with MBP Tag. Clinical Laboratory, 2018, 64, 467-475.	0.2	5
85	Protein tag-mediated fusion protein crystallization. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a102-a102.	0.0	0
86	<i>IRAV</i> (<i>FLJ11286</i>), an Interferon-Stimulated Gene with Antiviral Activity against Dengue Virus, Interacts with MOV10. Journal of Virology, 2017, 91, .	1.5	54
87	Design of an expression system to enhance MBP-mediated crystallization. Scientific Reports, 2017, 7, 40991.	1.6	38
88	Crystal structure of cocosin, a potential food allergen from coconut (Cocos nucifera). Journal of Allergy and Clinical Immunology, 2017, 139, AB261.	1.5	1
89	TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity. Journal of Experimental Medicine, 2017, 214, 459-473.	4.2	120
90	Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. Journal of Experimental Medicine, 2017, 214, 3219-3238.	4.2	485

#	Article	IF	CITATIONS
91	Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (<i>Cocos nucifera</i>). Journal of Agricultural and Food Chemistry, 2017, 65, 7560-7568.	2.4	10
92	Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cellular and Molecular Immunology, 2017, 14, 80-89.	4.8	144
93	Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin. LWT - Food Science and Technology, 2017, 75, 25-33.	2.5	43
94	Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design. Biochemical and Biophysical Research Communications, 2017, 492, 624-630.	1.0	59
95	Virulence factors on the surface of Gram-positive pathogens and mechanisms of host-pathogen recognition. Scientia Sinica Vitae, 2017, 47, 98-107.	0.1	0
96	Molecular mechanism of divalent-metal-induced activation of NS3 helicase and insights into Zika virus inhibitor design. Nucleic Acids Research, 2016, 44, gkw941.	6.5	35
97	RACE Enhances TLR Responses through Binding and Internalization of RNA. Journal of Immunology, 2016, 197, 4118-4126.	0.4	51
98	Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nature Immunology, 2015, 16, 1025-1033.	7.0	202
99	Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 151-156.	2.2	15
100	Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Current Opinion in Immunology, 2014, 26, 14-20.	2.4	28
101	Crystal Structure of Korean Pine (Pinus koraiensis) 7S Seed Storage Protein with Copper Ligands. Journal of Agricultural and Food Chemistry, 2014, 62, 222-228.	2.4	18
102	Isolation and characterization of Korean pine (Pinus koraiensis) convicilin. Plant Physiology and Biochemistry, 2014, 80, 97-104.	2.8	8
103	Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspaseâ€1. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1266-1270.	1.5	58
104	Crystal Structure of Korean Pine (Pinus koraiensis) Vicilin. Journal of Allergy and Clinical Immunology, 2013, 131, AB17.	1.5	0
105	The structure of the CARD8 caspase-recruitment domain suggests its association with the FIIND domain and procaspases through adjacent surfaces. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 482-487.	0.7	14
106	Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 855-860.	0.7	14
107	IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4571-80.	3.3	285
108	High-resolution crystal structure of human Dim2/TXNL4B. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 223-227.	0.7	6

#	Article	IF	CITATIONS
109	RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. Journal of Experimental Medicine, 2013, 210, 2447-2463.	4.2	177
110	Structure of the Absent in Melanoma 2 (AIM2) Pyrin Domain Provides Insights into the Mechanisms of AIM2 Autoinhibition and Inflammasome Assembly. Journal of Biological Chemistry, 2013, 288, 13225-13235.	1.6	138
111	Mouse, but not Human STINC, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. Journal of Immunology, 2013, 190, 5216-5225.	0.4	334
112	RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. Journal of Cell Biology, 2013, 203, 20310IA111.	2.3	0
113	Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IF116 Receptor. Immunity, 2012, 36, 561-571.	6.6	456
114	IFI16 is an innate immune sensor for intracellular DNA. Nature Immunology, 2010, 11, 997-1004.	7.0	1,369
115	Crystal Structure of Prunin-1, a Major Component of the Almond (<i>Prunus dulcis</i>) Allergen Amandin. Journal of Agricultural and Food Chemistry, 2009, 57, 8643-8651.	2.4	39
116	Crystal structure of Ara h 3, a major allergen in peanut. Molecular Immunology, 2009, 46, 1796-1804.	1.0	84
117	Structure of peanut major allergen Ara h 3. Journal of Allergy and Clinical Immunology, 2009, 123, S228-S228.	1.5	0
118	Purification, crystallization and initial crystallographic characterization of the <i>Ginkgo biloba</i> 11S seed globulin ginnacin. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 641-644.	0.7	4
119	Purification, Crystallization and Preliminary X-ray Characterization of Prunin-1, a Major Component of the Almond (<i>Prunus dulcis</i>) Allergen Amandin. Journal of Agricultural and Food Chemistry, 2008, 56, 5352-5358.	2.4	34
120	Purification and Characterization of the 7S Vicilin from Korean Pine (Pinus koraiensis). Journal of Agricultural and Food Chemistry, 2008, 56, 8159-8165.	2.4	24
121	X-ray crystal structure of TNF ligand family member TL1A at 2.1Ã Biochemical and Biophysical Research Communications, 2007, 364, 1-6.	1.0	34
122	Purification and crystallization of recombinant human TNF-like ligand TL1A. Cytokine, 2007, 40, 115-122.	1.4	14
123	Purification, crystallization and initial crystallographic characterization of peanut major allergen Araâ€hâ€3. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 848-851.	0.7	9
124	Purification, crystallization and initial crystallographic characterization of brazil-nut allergen Berâ€eâ€2. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 976-979.	0.7	13
125	Crystallization and initial crystallographic characterization of a vicilin-type seed storage protein fromPinus koraiensis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 1041-1043.	0.7	6
126	A 1.55 Ã resolution X-ray crystal structure of HEF2/ERH and insights into its transcriptional and cell-cycle interaction networks. Proteins: Structure, Function and Bioinformatics, 2007, 68, 427-437.	1.5	21

#	Article	IF	CITATIONS
127	Identification of Human dim1 as a Peptidase with Autocleavage Activity. Chemical Biology and Drug Design, 2006, 68, 266-272.	1.5	5
128	Overproduction, purification, crystallization and preliminary X-ray diffraction studies of the human spliceosomal protein TXNL4B. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 282-284.	0.7	3
129	Overproduction, purification, crystallization and preliminary X-ray diffraction studies of the human transcription repressor ERH. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 531-533.	0.7	6
130	Potential Role of Personal Protective Equipment Use in the Protection Against COVID-19 Infection Among Health Care Workers. SSRN Electronic Journal, 0, , .	0.4	2