List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3063191/publications.pdf Version: 2024-02-01

		257450	233421
128	2,314	24	45
papers	citations	h-index	g-index
129	129	129	2658
all docs	docs citations	times ranked	citing authors

LUIS FONSECA

#	Article	IF	CITATIONS
1	New Fabrication Method of Silicon Sub-Micron Beams with Monolithic Contacts for Thermoelectric Transport Properties Analysis. Nanomaterials, 2022, 12, 1326.	4.1	1
2	Tuning the Thermoelectric Properties of Boronâ€Doped Silicon Nanowires Integrated into a Microâ€Harvester. Advanced Materials Technologies, 2022, 7, .	5.8	8
3	Transitioning from Si to SiGe Nanowires as Thermoelectric Material in Silicon-Based Microgenerators. Nanomaterials, 2021, 11, 517.	4.1	24
4	Improved design of an all-Si based thermoelectric microgenerator. , 2021, , .		1
5	Standalone micro-reformer for on-demand hydrogen production from dimethyl ether. Journal of Power Sources, 2021, 506, 230241.	7.8	2
6	Thermal conductivity of individual Si and SiGe epitaxially integrated NWs by scanning thermal microscopy. Nanoscale, 2021, 13, 7252-7265.	5.6	10
7	Harvesting performance of a planar thermoelectric microgenerator with a compact design. , 2021, , .		0
8	Enhanced thermoelectric figure of merit of individual Si nanowires with ultralow contact resistances. Nano Energy, 2020, 67, 104191.	16.0	28
9	Monitoring perishable food. , 2020, , 289-314.		2
10	A Pd/Al2O3-based micro-reformer unit fully integrated in silicon technology for H-rich gas production. Journal of Physics: Conference Series, 2019, 1407, 012048.	0.4	0
11	Improved micronanogenerators based on silicon compatible materials and processing. Journal of Physics: Conference Series, 2019, 1407, 012097.	0.4	1
12	All-silicon thermoelectric micro/nanogenerator including a heat exchanger for harvesting applications. Journal of Power Sources, 2019, 413, 125-133.	7.8	27
13	SiGe nanowire arrays based thermoelectric microgenerator. Nano Energy, 2019, 57, 492-499.	16.0	71
14	From materials to devices: Bottom-up integration of nanomaterials onto silicon microstructures for thermoelectric and piezoelectric applications. , 2017, , .		0
15	Improved thermal and electrical design for an all-Si thermoelectric micropower source. Proceedings of SPIE, 2017, , .	0.8	1
16	Power Response of a Planar Thermoelectric Microgenerator Based on Silicon Nanowires at Different Convection Regimes. Energy Harvesting and Systems, 2016, 3, 335-342.	2.7	9
17	Optimization of power output in planar thermoelectric microgenerators based on Si nanowires. Journal of Physics: Conference Series, 2016, 773, 012026.	0.4	2
18	Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators. Semiconductor Science and Technology, 2016, 31, 084001.	2.0	35

#	Article	IF	CITATIONS
19	Optical particle detection in liquid suspensions with a hybrid integrated microsystem. Sensors and Actuators A: Physical, 2016, 247, 629-640.	4.1	5
20	Thermal Test of an Improved Platform for Silicon Nanowire-Based Thermoelectric Micro-generators. Journal of Electronic Materials, 2016, 45, 1689-1694.	2.2	10
21	Optical Particle Detection in Liquid Suspensions with a Hybrid Integrated Microsystem. Procedia Engineering, 2015, 120, 1071-1074.	1.2	0
22	Improved thermal isolation of silicon suspended platforms for an all-silicon thermoelectric microgenerator based on large scale integration of Si nanowires as thermoelectric material. Journal of Physics: Conference Series, 2015, 660, 012113.	0.4	2
23	Bottom-up Silicon Nanowire Arrays for Thermoelectric Harvesting. Materials Today: Proceedings, 2015, 2, 675-679.	1.8	12
24	Electrical transport properties of V2O5 thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature. Thin Solid Films, 2015, 589, 730-734.	1.8	25
25	Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor. Nanotechnology, 2015, 26, 195302.	2.6	37
26	Hybrid integration of VCSELs and microlenses for a particle detection microoptical system. , 2015, , .		0
27	Interdigitated design of a thermoelectric microgenerator based on silicon nanowire arrays. Proceedings of SPIE, 2015, , .	0.8	2
28	SiNERGY, a project on energy harvesting and microstorage empowered by Silicon technologies. , 2015, , .		0
29	Optical monitoring of wine alcoholic fermentation using a non-specific NDIR microarray. , 2014, , .		1
30	New approach for batch microfabrication of silicon-based micro fuel cells. Microsystem Technologies, 2014, 20, 341-348.	2.0	15
31	Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures. Energy and Environmental Science, 2014, 7, 3617-3629.	30.8	76
32	Porous La0.6Sr0.4CoO3â^î´ thin film cathodes for large area micro solid oxide fuel cell power generators. Journal of Power Sources, 2014, 248, 1042-1049.	7.8	42
33	Sensors and Micro and Nano Technologies for the Food Sector. , 2013, , .		0
34	Improved Thermal Behavior of Multiple Linked Arrays of Silicon Nanowires Integrated into Planar Thermoelectric Microgenerators. Journal of Electronic Materials, 2013, 42, 1918-1925.	2.2	17
35	Integrating micro and nano: A route for all-silicon thermoelectricity?. , 2013, , .		0
36	Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices. Nano Energy, 2012, 1, 812-819.	16.0	103

#	Article	IF	CITATIONS
37	Finite-element analysis of a miniaturized ion mobility spectrometer for security applications. Sensors and Actuators B: Chemical, 2012, 170, 13-20.	7.8	14
38	A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer. Microsystem Technologies, 2012, 18, 1147-1154.	2.0	8
39	A micromachined thermoelectric sensor for natural gas analysis: Multivariate calibration results. Sensors and Actuators B: Chemical, 2012, 166-167, 338-348.	7.8	21
40	Modelling a P-FAIMS with multiphysics FEM. Journal of Mathematical Chemistry, 2012, 50, 359-373.	1.5	3
41	Silicon nanowire arrays as thermoelectric material for a power microgenerator. Journal of Micromechanics and Microengineering, 2011, 21, 104007.	2.6	39
42	Methods and Techniques for the Fabrication of Gas Sensing Devices from Nanowires. Procedia Engineering, 2011, 25, 1409-1412.	1.2	0
43	Planar Thermoelectric Microgenerators Based on Silicon Nanowires. Journal of Electronic Materials, 2011, 40, 851-855.	2.2	24
44	A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer. , 2011, , .		0
45	Planar Micro Ion Mobility Spectrometer modelling for explosives detection. , 2011, , .		1
46	Modeling vapor detection in a micro ion mobility spectrometer for security applications. Procedia Engineering, 2010, 5, 1236-1239.	1.2	2
47	Simulation of a planar micro Ion Mobility Spectrometer for security applications. , 2010, , .		0
48	Qualitative and quantitative substance discrimination using a CMOS compatible non-specific NDIR microarray. Sensors and Actuators B: Chemical, 2009, 141, 396-403.	7.8	15
49	Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136, 546-554.	7.8	36
50	Sensitivity improvement of a microcantilever based mass sensor. Microelectronic Engineering, 2009, 86, 1187-1189.	2.4	40
51	Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell. Journal of Power Sources, 2009, 194, 391-396.	7.8	44
52	Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149, 65-73.	4.1	18
53	Use of boron heavily doped silicon slabs for gas sensors based on free-standing membranes. Sensors and Actuators B: Chemical, 2008, 130, 538-545.	7.8	11
54	Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sensors and Actuators B: Chemical, 2008, 132, 540-544.	7.8	35

#	Article	IF	CITATIONS
55	Sub-ppm gas sensor detection via spiral μ-preconcentrator. Sensors and Actuators B: Chemical, 2008, 132, 149-154.	7.8	49
56	Influence of the internal gas flow distribution on the efficiency of a μ-preconcentrator. Sensors and Actuators B: Chemical, 2008, 135, 52-56.	7.8	7
57	A compact optical multichannel system for ethylene monitoring. Microsystem Technologies, 2008, 14, 637-644.	2.0	19
58	Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132, 498-507.	7.8	19
59	A micromachined thermoelectric sensor for natural gas analysis: Thermal model and experimental results. Sensors and Actuators B: Chemical, 2008, 134, 551-558.	7.8	36
60	Leakage currents and dielectric breakdown of Si1â~'xâ~'yGexCy thermal oxides. Microelectronics Reliability, 2008, 48, 1635-1640.	1.7	0
61	Towards a monolithic micro direct methanol fuel cell. , 2008, , .		0
62	A high sensitivity silicon microcantilever based mass sensor. , 2008, , .		6
63	Thermoelectric MEMS sensors for natural gas analysis. , 2008, , .		0
64	Preconcentrator-based sensor Ã,µ-system for low-level benzene detection. Proceedings of SPIE, 2008, , .	0.8	0
65	Design and Fabrication of Micromachined Silicon Based Mid Infrared Multilenses for Gas Sensing Applications. , 2007, , .		2
66	Application of Micro and Nanotechnologies to Food Safety and Quality Monitoring. Measurement and Control, 2007, 40, 116-119.	1.8	6
67	RFID reader with gas sensing capability for monitoring fruit along the logistic chain: array development and signal processing. , 2007, 6589, 226.		0
68	A compact optical ethylene monitoring system. , 2007, , .		3
69	Micro and nanotechnologies for the development of an integrated chromatographic system. , 2007, , .		2
70	Dimension-Scaling of Microcantilevers Resonators. , 2007, , .		1
71	A Silicon-Based Direct Methanol Micro Fuel Cell. , 2007, , .		0
72	Spiral μ-preconcentrator for gas sensor detection in the ppb range. Proceedings of IEEE Sensors, 2007, , .	1.0	0

#	Article	IF	CITATIONS
73	Silicon μ-preconcentrator for improved gas detection. , 2007, , .		Ο
74	Improvement of the gas sensor response via silicon μ-preconcentrator. Sensors and Actuators B: Chemical, 2007, 127, 288-294.	7.8	23
75	Non-selective NDIR array for gas detection. Sensors and Actuators B: Chemical, 2007, 127, 69-73.	7.8	67
76	An RFID reader with onboard sensing capability for monitoring fruit quality. Sensors and Actuators B: Chemical, 2007, 127, 143-149.	7.8	81
77	FEM Simulation and Characterization of Microcantilevers Resonators. , 2006, , .		0
78	Influence of the doping material on the benzene detection. , 2006, , .		1
79	Mechanical characterization of thermal flow sensors membranes. Sensors and Actuators A: Physical, 2006, 125, 260-266.	4.1	10
80	Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters. Sensors and Actuators B: Chemical, 2006, 116, 183-191.	7.8	18
81	Fresnel lenses: study and fabrication in silicon technology for medium-IR applications. , 2006, 6186, 233.		5
82	Integrated tunneling sensor for nanoelectromechanical systems. Applied Physics Letters, 2006, 89, 173101.	3.3	6
83	Towards a Microtechnology based 4-channel infrared detector unit for a miniaturised NDIR system. , 2006, , .		0
84	Microsystems for the agrofood field. Journal of Physics: Conference Series, 2005, 10, 267-272.	0.4	2
85	Mirror electrostatic actuation of a medium-infrared tuneable Fabry-Perot interferometer based on a surface micromachining process. Sensors and Actuators A: Physical, 2005, 123-124, 584-589.	4.1	10
86	Characterization of thermal conductivity in thin film multilayered membranes. Thin Solid Films, 2005, 484, 328-333.	1.8	13
87	A methodology to extract dynamic compact thermal models under time-varying boundary conditions: application to a thermopile based IR sensor. Microsystem Technologies, 2005, 12, 21-29.	2.0	6
88	<title>A highly sensitive IR-optical sensor for ethylene-monitoring</title> ., 2005, 5836, 452.		9
89	Development of a CMOS-compatible PCR chip: comparison of design and system strategies. Journal of Micromechanics and Microengineering, 2004, 14, 1558-1568.	2.6	34
90	Feasibility of a flip-chip approach to integrate an IR filter and an IR detector in a future gas detection cell. Microsystem Technologies, 2004, 10, 382-386.	2.0	13

#	Article	IF	CITATIONS
91	Impact of carbon concentration on the interface density of states of metal-oxide Si1â^'xâ^'y GexCy (strained) capacitors. Journal of Electronic Materials, 2004, 33, 1022-1027.	2.2	3
92	Optical and electrical properties of Silâ^'xâ^'yGexCy strained layers thermally oxidized. Microelectronic Engineering, 2004, 72, 185-190.	2.4	2
93	Thermal AFM: a thermopile case study. Ultramicroscopy, 2004, 101, 153-159.	1.9	3
94	A surface micromachining process for the development of a medium-infrared tuneable Fabry–Perot interferometer. Sensors and Actuators A: Physical, 2004, 113, 39-47.	4.1	22
95	AFM thermal imaging as an optimization tool for a bulk micromachined thermopile. Sensors and Actuators A: Physical, 2004, 115, 440-446.	4.1	14
96	Effect of Combined Oxygenation and Gettering on Minority Carrier Lifetime in High-Resistivity FZ Silicon. Journal of the Electrochemical Society, 2004, 151, G652.	2.9	3
97	Multi-range silicon micromachined flow sensor. Sensors and Actuators A: Physical, 2004, 110, 282-288.	4.1	112
98	New evidence of dominant processing effects in standard and oxygenated silicon diodes after neutron irradiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 512, 52-59.	1.6	4
99	Assessment of the final metrological characteristics of a MOEMS-based NDIR spectrometer through system modeling and data processing. IEEE Sensors Journal, 2003, 3, 587-594.	4.7	18
100	Novel results on fluence dependence and annealing behavior of oxygenated and non-oxygenated silicon detectors. IEEE Transactions on Nuclear Science, 2002, 49, 1377-1382.	2.0	7
101	Developments for radiation hard silicon detectors by defect engineering—results by the CERN RD48 (ROSE) Collaboration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 465, 60-69.	1.6	88
102	Radiation hard silicon detectors—developments by the RD48 (ROSE) collaboration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 466, 308-326.	1.6	377
103	Optical characterization of thermally oxidized Si1â^'â^'Ge C layers. Thin Solid Films, 2000, 364, 233-238.	1.8	8
104	Silicon microsystem passivation for high-voltage applications in DNA chips. Microelectronics Reliability, 2000, 40, 787-789.	1.7	3
105	Oxidation of Si1â^'xâ^'yGexCy strained layers grown on Si: kinetics and interface properties. Microelectronics Reliability, 2000, 40, 829-832.	1.7	10
106	Detection of gases with arrays of micromachined tin oxide gas sensors. Sensors and Actuators B: Chemical, 2000, 65, 244-246.	7.8	40
107	Silicon wafer oxygenation from SiO2 layers for radiation hard detectors. Microelectronics Reliability, 2000, 40, 791-794.	1.7	15
108	Electrical characterisation of Si3N4/SiO2 double layers on p-type 6H–SiC. Microelectronics Reliability, 2000, 40, 833-836.	1.7	4

#	Article	IF	CITATIONS
109	Soft breakdown conduction in ultrathin (3-5 nm) gate dielectrics. IEEE Transactions on Electron Devices, 2000, 47, 82-89.	3.0	103
110	β-SiC on SiO2 formed by ion implantation and bonding for micromechanics applications. Sensors and Actuators A: Physical, 1999, 74, 169-173.	4.1	16
111	Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors. Sensors and Actuators B: Chemical, 1999, 58, 325-329.	7.8	50
112	Thermal dry oxidation of Si1-x-yGexCy strained layers grown on silicon. Microelectronic Engineering, 1999, 48, 207-210.	2.4	10
113	A reliability comparison of RTO and furnace thin SiO2 layers: effect of the oxidation temperature. Microelectronic Engineering, 1998, 40, 61-75.	2.4	5
114	Stress-profile characterization and test-structure analysis of single and double ion-implanted LPCVD polycrystalline silicon. Sensors and Actuators A: Physical, 1996, 54, 718-723.	4.1	18
115	Electrical Characteristics of Postoxidation Annealed Very Thin SiO2 Films: Potential Benefits of Rapid Thermal Processing. Journal of the Electrochemical Society, 1996, 143, 356-360.	2.9	4
116	Effect of RPT/furnace processing on the minority carrier lifetime in very thin oxide MOS capacitors. Solid-State Electronics, 1994, 37, 115-117.	1.4	1
117	Breakdown characteristics of RTO 10 nm SiO/sub 2/ films grown at different temperatures. IEEE Electron Device Letters, 1994, 15, 449-451.	3.9	13
118	Influence of the silicon wafer cleaning treatment on the Si/SiO2 interfaces analyzed by infrared spectroscopy. Applied Surface Science, 1992, 56-58, 861-865.	6.1	12
119	A comparison of RTO and furnace SiO/sub 2/ time-zero-breakdown characteristics. IEEE Transactions on Electron Devices, 1991, 38, 1743-1747.	3.0	5
120	Feasibility of a flip chip approach to integrate an IR filter and an IR detector in a future gas detection cell. , 0, , .		0
121	Thermal and mechanical simulation of bulk resonators. , 0, , .		3
122	Micro-cantilevers for gas sensing. , 0, , .		3
123	FEM simulations to estimate the polymer thickness deposited over mechanical resonators. , 0, , .		0
124	Comparison of model order reduction methodologies for thermal problems. , 0, , .		2
125	Thermal conductivity determination of micromachined membranes. , 0, , .		2
126	Thermopile sensor array for an electronic nose integrated non-selective NDIR gas detection system. , 0, , .		3

8

3

#	Article	IF	CITATIONS
127	Mechanical characterisation of micro-resonator structures. , 0, , .		ο

128 Managing Heat Transfer Issues in Thermoelectric Microgenerators. , 0, , .