Haojian Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3062471/publications.pdf Version: 2024-02-01

ΗλομΑΝΤΗ

#	Article	lF	CITATIONS
1	Analysis and control for a bioinspired multi-legged soft robot. Biomimetic Intelligence and Robotics, 2022, 2, 100030.	2.0	4
2	Nanofiber-based biodegradable millirobot with controllable anchoring and adaptive stepwise release functions. Matter, 2022, 5, 1277-1295.	10.0	21
3	Swarm of micro flying robots in the wild. Science Robotics, 2022, 7, eabm5954.	17.6	139
4	Actuation and biomedical development of micro-/nanorobots – A review. Materials Today Nano, 2022, 18, 100223.	4.6	12
5	A Proprioceptive Soft Robot Module Based on Supercoiled Polymer Artificial Muscle Strings. Polymers, 2022, 14, 2265.	4.5	6
6	7-DoFs Rotation-Thrust Microrobotic Control for Low-Invasive Cell Pierce via Impedance Compensation. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5095-5106.	5.8	8
7	Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously. Nature Communications, 2022, 13, .	12.8	12
8	Millimeterâ€Scale Soft Continuum Robots for Largeâ€Angle and Highâ€Precision Manipulation by Hybrid Actuation. Advanced Intelligent Systems, 2021, 3, 2000189.	6.1	48
9	Starfish Inspired Milli Soft Robot With Omnidirectional Adaptive Locomotion Ability. IEEE Robotics and Automation Letters, 2021, 6, 3325-3332.	5.1	18
10	Robust Orthogonal-View 2-D/3-D Rigid Registration for Minimally Invasive Surgery. Micromachines, 2021, 12, 844.	2.9	2
11	A 3D-Printed Fin Ray Effect Inspired Soft Robotic Gripper with Force Feedback. Micromachines, 2021, 12, 1141.	2.9	18
12	Robot-aided fNâ^™m torque sensing within an ultrawide dynamic range. Microsystems and Nanoengineering, 2021, 7, 2.	7.0	4
13	Corrections to "Starfish Inspired Milli Soft Robot With Omnidirectional Adaptive Locomotion Ability―[Apr 21 3325-3332]. IEEE Robotics and Automation Letters, 2021, 6, 5348-5348.	5.1	1
14	Nanorobotic Manipulation System for 360\$^{circ }\$ Characterization Atomic Force Microscopy. IEEE Transactions on Industrial Electronics, 2020, 67, 2916-2924.	7.9	20
15	Flexible 3-D Helix Fabrication by In-Situ SEM Micromanipulation System. IEEE Transactions on Industrial Electronics, 2020, 67, 5565-5574.	7.9	6
16	An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Science Robotics, 2020, 5, .	17.6	115
17	Batteryâ€Less Soft Millirobot That Can Move, Sense, and Communicate Remotely by Coupling the Magnetic and Piezoelectric Effects. Advanced Science, 2020, 7, 2000069.	11.2	73
18	Precise Watch-Hand Alignment Under Disturbance Condition by Microrobotic System. IEEE Transactions on Automation Science and Engineering, 2019, 16, 278-285.	5.2	3

Haojian Lu

#	Article	IF	CITATIONS
19	Magnetically Actuated Heterogeneous Microcapsule-Robot for the Construction of 3D Bioartificial Architectures. ACS Applied Materials & amp; Interfaces, 2019, 11, 25664-25673.	8.0	19
20	Efficient Micro Waveguide Coupling based on Microrobotic Positioning. , 2019, , .		0
21	Lowâ€Invasive Cell Injection based on Rotational Microrobot. Advanced Biology, 2019, 3, e1800274.	3.0	5
22	Automatic 3D reconstruction of SEM images based on Nano-robotic manipulation and epipolar plane images. Ultramicroscopy, 2019, 200, 149-159.	1.9	7
23	Investigation of the Nonaxisymmetric Bending Property of Pollen Tubes via a Rotary Nanorobotic System. IEEE Nanotechnology Magazine, 2019, 18, 139-143.	2.0	1
24	Self-Assembly Magnetic Chain Unit for Bulk Biomaterial Actuation. IEEE Robotics and Automation Letters, 2019, 4, 262-268.	5.1	11
25	Scale effect investigation of copper microwire's mechanical properties after in situ scanning electron microscope twisting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 3670-3677.	2.1	3
26	360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping. Ultramicroscopy, 2019, 196, 83-87.	1.9	7
27	Ultrahigh-Precision Rotational Positioning Under a Microscope: Nanorobotic System, Modeling, Control, and Applications. IEEE Transactions on Robotics, 2018, 34, 497-507.	10.3	56
28	Specimen's plane misaligned installation solution based on charge fluctuation inside SEM. Applied Physics Letters, 2018, 112, 144102.	3.3	6
29	An Omnidirectional and Movable Palletizing Robot based on Computer Vision Positing. , 2018, , .		3
30	A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Communications, 2018, 9, 3944.	12.8	385
31	Nanorobotic System for Precise In-situ 3D Manufacture of Helical Microstructures. IEEE Robotics and Automation Letters, 2018, , 1-1.	5.1	8
32	Less-invasive non-embedded cell cutting by nanomanipulation and vibrating nanoknife. Applied Physics Letters, 2017, 110, .	3.3	18
33	In situ reduction of silver nanoparticles on hybrid polydopamine–copper phosphate nanoflowers with enhanced antimicrobial activity. Journal of Materials Chemistry B, 2017, 5, 5311-5317.	5.8	34
34	Automatic Sample Alignment Under Microscopy for 360° Imaging Based on the Nanorobotic Manipulation System. IEEE Transactions on Robotics, 2017, 33, 220-226.	10.3	36
35	Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test. Scientific Reports, 2017, 7, 3077.	3.3	16
36	Multi-directional Characterization for Pollen Tubes Based on a Nanorobotic Manipulation System. Lecture Notes in Computer Science, 2017, , 84-93.	1.3	0

Haojian Lu

#	Article	IF	CITATIONS
37	In situbending and recovery characterization of hollow glass nanoneedle based on nanorobotic manipulation. Journal of Micromechanics and Microengineering, 2017, 27, 095011.	2.6	5
38	Rotational nanorobotic manipulation system with increment alignment method for multi-directional defect characterization inside SEM. , 2017, , .		0
39	Effect of alignment angle on the alignment accuracy of a miniature rotation robot for microscopy imaging. International Journal of Advanced Robotic Systems, 2017, 14, 172988141770357.	2.1	4
40	Microrobotic Manipulation at Time-Varying Air–Liquid Interface for High-Precise Watch-Hand Alignment. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2746-2756.	5.8	6
41	Ultrasonic robotic system for noncontact small object manipulation based on Kinect gesture control. International Journal of Advanced Robotic Systems, 2017, 14, 172988141773873.	2.1	3
42	Miniature rotation robot for full-orientation imaging under microscopy. , 2017, , .		0
43	Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials. Scanning, 2017, 2017, 1-11.	1.5	23
44	In Situ SEM Torsion Test of Metallic Glass Microwires Based on Micro Robotic Manipulation. Scanning, 2017, 2017, 1-7.	1.5	5
45	Remote control non-contact manipulation system for micro robotics. , 2017, , .		0
46	State of the Art: Bipedal Robots for Lower Limb Rehabilitation. Applied Sciences (Switzerland), 2017, 7, 1182.	2.5	34
47	Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Advances, 2016, 6, 095309.	1.3	12
48	Development of lower limb rehabilitation evaluation system based on virtual reality technology. , 2016, , .		2
49	Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting. Scientific Reports, 2016, 6, 22534.	3.3	32
50	Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot. Sensors, 2015, 15, 31566-31580.	3.8	17