Cheng Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3062198/publications.pdf

Version: 2024-02-01

394421 526287 2,214 32 19 27 h-index citations g-index papers 32 32 32 2426 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Colorâ€Tunable Dual Persistent Emission Via a Triplet Exciton Reservoir for Temperature Sensing and Antiâ€Counterfeiting. Advanced Optical Materials, 2022, 10, 2101773.	7.3	34
2	Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer. ACS Nano, 2022, 16, 2319-2329.	14.6	27
3	One-Dimensional Helical Aggregates Organized from Achiral Imine-Based Polymers. , 2022, 4, 715-723.		6
4	Directing the Architecture of Surface-Clean Cu ₂ O for CO Electroreduction. Journal of the American Chemical Society, 2022, 144, 12410-12420.	13.7	24
5	Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Research, 2021, 14, 381-386.	10.4	16
6	An Ultrasmall SnFe ₂ O ₄ Nanozyme with Endogenous Oxygen Generation and Glutathione Depletion for Synergistic Cancer Therapy. Advanced Functional Materials, 2021, 31, 2006216.	14.9	154
7	A Ni or Co single atom anchored conjugated microporous polymer for high-performance photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 19894-19900.	10.3	34
8	Porous catalytic membranes for CO2 conversion. Journal of Energy Chemistry, 2021, 63, 74-86.	12.9	14
9	Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into functional materials. Materials Today, 2021, 47, 170-186.	14.2	69
10	Missingâ€Linkerâ€Assisted Artesunate Delivery by Metal–Organic Frameworks for Synergistic Cancer Treatment. Angewandte Chemie - International Edition, 2021, 60, 26254-26259.	13.8	28
11	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. Journal of the American Chemical Society, 2020, 142, 18138-18149.	13.7	99
12	Recent Advances in Covalent Organic Framework-Based Nanosystems for Bioimaging and Therapeutic Applications., 2020, 2, 1074-1092.		89
13	Metal–Organic Framework Derived Multicomponent Nanoagent as a Reactive Oxygen Species Amplifier for Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 13500-13511.	14.6	75
14	Efficient Nobleâ€Metalâ€Free Catalysts Supported by Threeâ€Dimensional Ordered Hierarchical Porous Carbon. Chemistry - an Asian Journal, 2020, 15, 2513-2519.	3.3	1
15	Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nature Communications, 2020, 11, 944.	12.8	278
16	Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis. Journal of the American Chemical Society, 2020, 142, 4862-4871.	13.7	304
17	Impeding Catalyst Sulfur Poisoning in Aqueous Solution by Metal–Organic Framework Composites. Small Methods, 2020, 4, 1900890.	8.6	22
18	Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications, 2020, 11, 357.	12.8	339

#	Article	IF	CITATIONS
19	Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angewandte Chemie, 2019, 131, 11541-11545.	2.0	21
20	Frontispiece: Selfâ€Sorting Doubleâ€Network Hydrogels with Tunable Supramolecular Handedness and Mechanical Properties. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
21	Frontispiz: Selfâ€Sorting Doubleâ€Network Hydrogels with Tunable Supramolecular Handedness and Mechanical Properties. Angewandte Chemie, 2019, 131, .	2.0	0
22	Selfâ€Sorting Doubleâ€Network Hydrogels with Tunable Supramolecular Handedness and Mechanical Properties. Angewandte Chemie, 2019, 131, 9466-9472.	2.0	8
23	Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 11419-11423.	13.8	133
24	Selfâ€Sorting Doubleâ€Network Hydrogels with Tunable Supramolecular Handedness and Mechanical Properties. Angewandte Chemie - International Edition, 2019, 58, 9366-9372.	13.8	57
25	A design strategy for the construction of 2D heteropore covalent organic frameworks based on the combination of $\langle i \rangle C < i \rangle < sub > 2v < sub \rangle $ and $\langle i \rangle D < i \rangle < sub \rangle 3h < sub \rangle $ symmetric building blocks. Polymer Chemistry, 2018, 9, 279-283.	3.9	19
26	Syntheses, Crystal Structures, and Properties of Two Quaternary Selenite/Telluriteâ€Nitrates with Formula of Bi(SeO ₃)(NO ₃) and Bi ₃ (ν ₃ 3) ₃)(NO ₃) _{>2} . ChemistrySelect, 2017, 2, 1681-1685.	1.5	11
27	Construction of two heteropore covalent organic frameworks with Kagome lattices. CrystEngComm, 2017, 19, 4877-4881.	2.6	22
28	Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. Journal of the American Chemical Society, 2017, 139, 6736-6743.	13.7	217
29	Two-dimensional dual-pore covalent organic frameworks obtained from the combination of two D _{2h} symmetrical building blocks. Chemical Communications, 2016, 52, 11704-11707.	4.1	61
30	Precision Construction of 2D Heteropore Covalent Organic Frameworks by a Multipleâ€Linkingâ€Site Strategy. Chemistry - A European Journal, 2016, 22, 17784-17789.	3.3	46
31	Synthesis, Photophysical and Electrochemical Properties, and Selfâ€assembly Behavior of Two Hexaazatriphenylene Derivatives: A Single Bond Makes a Big Difference. Chemistry - an Asian Journal, 2016, 11, 839-843.	3.3	4
32	Missingâ€Linkerâ€Assisted Artesunate Delivery by Metalâ€Organic Frameworks for Synergistic Cancer Treatment. Angewandte Chemie, 0, , .	2.0	2