
Asis Datta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3061626/publications.pdf Version: 2024-02-01

Δεις Πλττλ

#	Article	IF	CITATIONS
1	Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of <i>Candida albicans</i> . Microbiology and Molecular Biology Reviews, 2007, 71, 348-376.	6.6	457
2	Small RNAs in plants: recent development and application for crop improvement. Frontiers in Plant Science, 2015, 06, 208.	3.6	235
3	Comparative Proteomics Analysis of Differentially Expressed Proteins in Chickpea Extracellular Matrix during Dehydration Stress. Molecular and Cellular Proteomics, 2007, 6, 1868-1884.	3.8	183
4	Enhancement of fruit shelf life by suppressing <i>N</i> -glycan processing enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2413-2418.	7.1	179
5	Genetically modified (GM) crops: milestones and new advances in crop improvement. Theoretical and Applied Genetics, 2016, 129, 1639-1655.	3.6	123
6	Oxalate Decarboxylase from Collybia velutipes. Journal of Biological Chemistry, 2000, 275, 7230-7238.	3.4	112
7	Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma, 2016, 253, 581-594.	2.1	101
8	Next-generation protein-rich potato expressing the seed protein gene <i>AmA1</i> is a result of proteome rebalancing in transgenic tuber. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17533-17538.	7.1	91
9	The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum. Journal of Experimental Botany, 2011, 62, 571-582.	4.8	72
10	Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase Â. Plant Physiology, 2013, 162, 364-378.	4.8	62
11	Attenuation of Virulence and Changes in Morphology in Candida albicans by Disruption of the N -Acetylglucosamine Catabolic Pathway. Infection and Immunity, 2001, 69, 7898-7903.	2.2	61
12	Genetic engineering for improving quality and productivity of crops. Agriculture and Food Security, 2013, 2, .	4.2	50
13	Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnology Journal, 2016, 14, 1394-1405.	8.3	50
14	Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene. Frontiers in Plant Science, 2016, 7, 10.	3.6	47
15	N-Acetylglucosamine Kinase, HXK1 Is Involved in Morphogenetic Transition and Metabolic Gene Expression in Candida albicans. PLoS ONE, 2013, 8, e53638.	2.5	38
16	Two gene clusters coâ€ordinate for a functional Nâ€acetylglucosamine catabolic pathway in <i>Vibrio cholerae</i> . Molecular Microbiology, 2011, 80, 1549-1560.	2.5	35
17	Current Trends in Candida albicans Research. Advances in Microbial Physiology, 1990, 30, 53-88.	2.4	32
18	Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality. Scientific Reports, 2012, 2, 951.	3.3	29

Asis Datta

#	Article	IF	CITATIONS
19	Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics, 2022, 135, 367-387.	3.6	29
20	Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-d-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans. Fungal Genetics and Biology, 2012, 49, 369-378.	2.1	28
21	Induction of Senescence and Identification of Differentially Expressed Genes in Tomato in Response to Monoterpene. PLoS ONE, 2013, 8, e76029.	2.5	28
22	Mechanism of lipid induced insulin resistance: Activated PKCε is a key regulator. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 495-506.	3.8	27
23	Insights into transcriptional regulation of Â-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening. Journal of Experimental Botany, 2014, 65, 5835-5848.	4.8	26
24	Manipulation of oxalate metabolism in plants for improving food quality and productivity. Phytochemistry, 2019, 158, 103-109.	2.9	26
25	Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance. PLoS ONE, 2017, 12, e0173381.	2.5	25
26	Cloning and characterization of the 5′-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. Biochemical Journal, 2002, 367, 67-75.	3.7	24
27	Unraveling the role of tomato Bcl-2-associated athanogene (BAG) proteins during abiotic stress response and fruit ripening. Scientific Reports, 2021, 11, 21734.	3.3	24
28	Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans. Fungal Genetics and Biology, 2015, 83, 45-57.	2.1	21
29	Upregulation of galactose metabolic pathway by N-acetylglucosamine induced endogenous synthesis of galactose in Candida albicans. Fungal Genetics and Biology, 2013, 54, 15-24.	2.1	19
30	A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter. Scientific Reports, 2015, 5, 14578.	3.3	18
31	<scp><i>M</i></scp> <i>agnaporthe oryzae</i> aminosugar metabolism is essential for successful host colonization. Environmental Microbiology, 2016, 18, 1063-1077.	3.8	15
32	Recent Insights into Plant Circadian Clock Response Against Abiotic Stress. Journal of Plant Growth Regulation, 2022, 41, 3530-3543.	5.1	15
33	A Secretion Signal Is Present in the Collybia velutipes Oxalate Decarboxylase Gene. Biochemical and Biophysical Research Communications, 2001, 289, 807-812.	2.1	12
34	In vivo role of <i>Candida albicans β</i> â€hexosaminidase (<i><scp>HEX</scp>1</i>) in carbon scavenging. MicrobiologyOpen, 2015, 4, 730-742.	3.0	12
35	Characterization of a Putative Spindle Assembly Checkpoint Kinase Mps1, Suggests Its Involvement in Cell Division, Morphogenesis and Oxidative Stress Tolerance in Candida albicans. PLoS ONE, 2014, 9, e101517.	2.5	11
36	N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering, 2022, 9, 64.	3.5	11

Asis Datta

#	Article	IF	CITATIONS
37	N-acetylglucosamine kinase, HXK1 contributes to white–opaque morphological transition in Candida albicans. Biochemical and Biophysical Research Communications, 2014, 445, 138-144.	2.1	10
38	Chromatin-Based Transcriptional Reprogramming in Plants under Abiotic Stresses. Plants, 2022, 11, 1449.	3.5	10
39	<i>N</i> -Acetylglucosamine (GlcNAc)-Inducible Gene <i>GlG2</i> Is a Novel Component of GlcNAc Metabolism in Candida albicans. Eukaryotic Cell, 2014, 13, 66-76.	3.4	9
40	Env7p Associates with the Golgin Protein Imh1 at the <i>trans</i> -Golgi Network in Candida albicans. MSphere, 2016, 1, .	2.9	9
41	Magnaporthe oryzae MoNdt80 is a transcriptional regulator of ClcNAc catabolic pathway involved in pathogenesis. Microbiological Research, 2020, 239, 126550.	5.3	9
42	Fruit ripening specific expression of β-D-N-acetylhexosaminidase (β-Hex) gene in tomato is transcriptionally regulated by ethylene response factor SIERF.E4. Plant Science, 2022, 323, 111380.	3.6	9
43	GM Crops: Dream to Bring Science to Society. Agricultural Research, 2012, 1, 95-99.	1.7	8
44	RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. Frontiers in Plant Science, 2022, 13, .	3.6	8
45	A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis. Applied Microbiology and Biotechnology, 2018, 102, 9731-9743.	3.6	6
46	Crystal structure of Gig2 protein from Candida albicans provides a structural insight into DUF1479 family oxygenases. International Journal of Biological Macromolecules, 2020, 150, 1272-1280.	7.5	3
47	Functional characterization of the LdNAGD gene in Leishmania donovani. Microbiological Research, 2021, 251, 126830.	5.3	3
48	Biotechnology for drug discovery and crop improvement. Nucleus (India), 2017, 60, 237-242.	2.2	2