Joao Palma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3061559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas. Agroforestry Systems, 2021, 95, 919.	0.9	46

2 Using the yield-SAFE model to assess the impacts of climate change on yield of coffee (Coffea arabica) Tj ETQq0 0 0 grgBT /Overlock 10 T

3	Quantifying Regulating Ecosystem Services with Increased Tree Densities on European Farmland. Sustainability, 2020, 12, 6676.	1.6	6
4	Population status of Boswellia papyrifera woodland and prioritizing its conservation interventions using multi-criteria decision model in northern Ethiopia. Heliyon, 2020, 6, e05139.	1.4	6
5	Challenges and innovations for improving the sustainability of European agroforestry systems of high nature and cultural value: stakeholder perspectives. Sustainability Science, 2020, 15, 1301-1315.	2.5	20
6	Whole system valuation of arable, agroforestry and tree-only systems at three case study sites in Europe. Journal of Cleaner Production, 2020, 269, 122283.	4.6	13
7	Dry deposition of air pollutants on trees at regional scale: A case study in the Basque Country. Agricultural and Forest Meteorology, 2019, 278, 107648.	1.9	20
8	Agroforestry is paying off – Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosystem Services, 2019, 36, 100896.	2.3	84
9	Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy, 2019, 83, 581-593.	2.5	121
10	Assessing food sustainable intensification potential of agroforestry using a carbon balance method. IForest, 2019, 12, 85-91.	0.5	8
11	Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: a case study. Agroforestry Systems, 2018, 92, 1059-1073.	0.9	33
12	Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforestry Systems, 2018, 92, 1075-1089.	0.9	35
13	Farmers' reasoning behind the uptake of agroforestry practices: evidence from multiple case-studies across Europe. Agroforestry Systems, 2018, 92, 811-828.	0.9	61
14	Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agroforestry Systems, 2018, 92, 877-891.	0.9	115
15	How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems, 2018, 92, 829-848.	0.9	64
16	Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agroforestry Systems, 2018, 92, 1047-1057.	0.9	18
17	Using high-resolution simulated climate projections in forest process-based modelling. Agricultural and Forest Meteorology, 2018, 263, 100-106.	1.9	13
18	Understory effect on tree and cork growth in cork oak woodlands. Forest Systems, 2018, 27, e02S.	0.1	10

Joao Palma

#	Article	IF	CITATIONS
19	Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems and Environment, 2017, 241, 121-132.	2.5	148
20	CliPick – Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture. Forest Systems, 2017, 26, eRC01.	0.1	21
21	Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal. Regional Environmental Change, 2015, 15, 1569-1580.	1.4	30
22	Innovative agroecosystem goods and services: key profitability drivers in Swiss agroforestry. Agronomy for Sustainable Development, 2015, 35, 759-770.	2.2	43
23	Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New Forests, 2015, 46, 293-307.	0.7	48
24	Carbon sequestration of modern Quercus suber L. silvoarable agroforestry systems in Portugal: a YieldSAFE-based estimation. Agroforestry Systems, 2014, 88, 791-801.	0.9	24
25	A web-based ToolBox approach to support adaptive forest management under climate change. Scandinavian Journal of Forest Research, 2014, 29, 96-107.	0.5	23
26	Valuing biodiversity enhancement in New Zealand's planted forests: Socioeconomic and spatial determinants of willingness-to-pay. Ecological Economics, 2014, 98, 90-101.	2.9	101
27	A decision support system for management planning of Eucalyptus plantations facing climate change. Annals of Forest Science, 2014, 71, 187-199.	0.8	35
28	A decision support system for a multi stakeholder's decision process in a Portuguese National Forest. Forest Systems, 2013, 22, 359.	0.1	20
29	Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. Forest Policy and Economics, 2012, 17, 59-68.	1.5	22
30	Resource communication. slMfLOR – platform for portuguese forest simulators. Forest Systems, 2012, 21, 543.	0.1	13
31	A system identification approach for developing and parameterising an agroforestry system model under constrained availability of data. Environmental Modelling and Software, 2011, 26, 1540-1553.	1.9	16
32	Farm-SAFE: the process of developing a plot- and farm-scale model of arable, forestry, and silvoarable economics. Agroforestry Systems, 2011, 81, 93-108.	0.9	31
33	Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecological Modelling, 2010, 221, 1744-1756.	1.2	48
34	Methodological approach for the assessment of environmental effects of agroforestry at the landscape scale. Ecological Engineering, 2007, 29, 450-462.	1.6	55
35	Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering, 2007, 29, 419-433.	1.6	115
36	Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecological Engineering, 2007, 29, 434-449.	1.6	126

Joao Palma

#	Article	IF	CITATIONS
37	Target regions for silvoarable agroforestry in Europe. Ecological Engineering, 2007, 29, 401-418.	1.6	93
38	Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe. Ecological Economics, 2007, 63, 759-767.	2.9	69
39	Modeling environmental benefits of silvoarable agroforestry in Europe. Agriculture, Ecosystems and Environment, 2007, 119, 320-334.	2.5	116