
Teru Kanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3061554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Current Biology, 1998, 8, 377-385.	1.8	898
2	EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO Journal, 2006, 25, 4207-4214.	3.5	275
3	When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Experimental Cell Research, 2005, 302, 233-243.	1.2	141
4	Critical Role of Epstein-Barr Virus (EBV)-Encoded RNA in Efficient EBV-Induced B-Lymphocyte Growth Transformation. Journal of Virology, 2005, 79, 4298-4307.	1.5	105
5	Epstein-Barr Virus BZLF1 Gene, a Switch from Latency to Lytic Infection, Is Expressed as an Immediate-Early Gene after Primary Infection of B Lymphocytes. Journal of Virology, 2007, 81, 1037-1042.	1.5	96
6	Epsteinâ€Barr virus strain variation and cancer. Cancer Science, 2019, 110, 1132-1139.	1.7	96
7	Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19500-19505.	3.3	94
8	Epigenetic Histone Modification of Epstein-Barr Virus BZLF1 Promoter during Latency and Reactivation in Raji Cells. Journal of Virology, 2012, 86, 4752-4761.	1.5	92
9	Coupling of Mitotic Chromosome Tethering and Replication Competence in Epstein-Barr Virus-Based Plasmids. Molecular and Cellular Biology, 2001, 21, 3576-3588.	1.1	90
10	Epstein-Barr Virus Deubiquitinase Downregulates TRAF6-Mediated NF-κB Signaling during Productive Replication. Journal of Virology, 2013, 87, 4060-4070.	1.5	83
11	Production of High-Titer Epstein-Barr Virus Recombinants Derived from Akata Cells by Using a Bacterial Artificial Chromosome System. Journal of Virology, 2004, 78, 7004-7015.	1.5	79
12	Epstein-Barr Virus (EBV)-Encoded RNA 2 (EBER2) but Not EBER1 Plays a Critical Role in EBV-Induced B-Cell Growth Transformation. Journal of Virology, 2007, 81, 11236-11245.	1.5	79
13	Clustered MicroRNAs of the Epstein-Barr Virus Cooperatively Downregulate an Epithelial Cell-Specific Metastasis Suppressor. Journal of Virology, 2015, 89, 2684-2697.	1.5	75
14	EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer, 2019, 22, 486-496.	2.7	72
15	Selective capture of acentric fragments by micronuclei provides a rapid method for purifying extrachromosomally amplified DNA. Nature Cenetics, 1996, 12, 65-71.	9.4	68
16	Cross-species chromatin interactions drive transcriptional rewiring in Epstein–Barr virus–positive gastric adenocarcinoma. Nature Genetics, 2020, 52, 919-930.	9.4	65
17	The Human Cytomegalovirus Gene Products Essential for Late Viral Gene Expression Assemble into Prereplication Complexes before Viral DNA Replication. Journal of Virology, 2011, 85, 6629-6644.	1.5	64
18	Epstein-Barr Virus Transforming Protein LMP1 Plays a Critical Role in Virus Production. Journal of Virology, 2005, 79, 4415-4424.	1.5	61

Teru Kanda

#	Article	IF	CITATIONS
19	Gene expression profiling of Epstein–Barr virusâ€positive diffuse large Bâ€cell lymphoma of the elderly reveals alterations of characteristic oncogenetic pathways. Cancer Science, 2014, 105, 537-544.	1.7	61
20	Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains. Journal of Virology, 2016, 90, 4383-4393.	1.5	57
21	Symmetrical localization of extrachromosomally replicating viral genomes on sister chromatids. Journal of Cell Science, 2007, 120, 1529-1539.	1.2	55
22	Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase. Virology, 2009, 389, 75-81.	1.1	52
23	EBV-Encoded Latent Genes. Advances in Experimental Medicine and Biology, 2018, 1045, 377-394.	0.8	46
24	Epstein-Barr virus nuclear protein EBNA3C residues critical for maintaining lymphoblastoid cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4419-4424.	3.3	42
25	Nuclear Transport of Epstein-Barr Virus DNA Polymerase Is Dependent on the BMRF1 Polymerase Processivity Factor and Molecular Chaperone Hsp90. Journal of Virology, 2013, 87, 6482-6491.	1.5	40
26	Pin1 Interacts with the Epstein-Barr Virus DNA Polymerase Catalytic Subunit and Regulates Viral DNA Replication. Journal of Virology, 2013, 87, 2120-2127.	1.5	39
27	Different Distributions of Epstein-Barr Virus Early and Late Gene Transcripts within Viral Replication Compartments. Journal of Virology, 2013, 87, 6693-6699.	1.5	35
28	Transcriptional Repression by Sumoylation of Epstein-Barr Virus BZLF1 Protein Correlates with Association of Histone Deacetylase. Journal of Biological Chemistry, 2010, 285, 23925-23935.	1.6	34
29	The dynamics of acentric chromosomes in cancer cells revealed by GFP-based chromosome labeling strategies. Journal of Cellular Biochemistry, 2000, 79, 107-114.	1.2	31
30	Viral loads correlate with upregulation of PD-L1 and worse patient prognosis in Epstein–Barr Virus-associated gastric carcinoma. PLoS ONE, 2019, 14, e0211358.	1.1	31
31	Contribution of Myocyte Enhancer Factor 2 Family Transcription Factors to BZLF1 Expression in Epstein-Barr Virus Reactivation from Latency. Journal of Virology, 2013, 87, 10148-10162.	1.5	29
32	Quantitative evaluation of the role of Epstein–Barr virus immediate-early protein BZLF1 in B-cell transformation. Journal of General Virology, 2009, 90, 2331-2341.	1.3	29
33	Unexpected Instability of Family of Repeats (FR), the Critical cis-Acting Sequence Required for EBV Latent Infection, in EBV-BAC Systems. PLoS ONE, 2011, 6, e27758.	1.1	28
34	Transient increases in p53-responsible gene expression at early stages of Epstein-Barr virus productive replication. Cell Cycle, 2010, 9, 807-814.	1.3	27
35	Phosphorylation of p27Kip1 by Epstein-Barr Virus Protein Kinase Induces Its Degradation through SCFSkp2 Ubiquitin Ligase Actions during Viral Lytic Replication. Journal of Biological Chemistry, 2009, 284, 18923-18931.	1.6	26
36	DNA ligand designed to antagonize EBNA1 represses Epstein–Barr virusâ€ i nduced immortalization. Cancer Science, 2011, 102, 2221-2230.	1.7	25

Teru Kanda

#	Article	IF	CITATIONS
37	Involvement of Jun Dimerization Protein 2 (JDP2) in the Maintenance of Epstein-Barr Virus Latency. Journal of Biological Chemistry, 2011, 286, 22007-22016.	1.6	25
38	Regulation of Epstein-Barr Virus Life Cycle and Cell Proliferation by Histone H3K27 Methyltransferase EZH2 in Akata Cells. MSphere, 2018, 3, .	1.3	25
39	Identification of conserved SARS-CoV-2 spike epitopes that expand public cTfh clonotypes in mild COVID-19 patients. Journal of Experimental Medicine, 2021, 218, .	4.2	24
40	Spatiotemporally Different DNA Repair Systems Participate in Epstein-Barr Virus Genome Maturation. Journal of Virology, 2011, 85, 6127-6135.	1.5	23
41	Epstein-Barr Virus Polymerase Processivity Factor Enhances BALF2 Promoter Transcription as a Coactivator for the BZLF1 Immediate-Early Protein. Journal of Biological Chemistry, 2009, 284, 21557-21568.	1.6	21
42	Identification and Characterization of CCAAT Enhancer-binding Protein (C/EBP) as a Transcriptional Activator for Epstein-Barr Virus Oncogene Latent Membrane Protein 1. Journal of Biological Chemistry, 2011, 286, 42524-42533.	1.6	20
43	RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology, 2021, 557, 44-54.	1.1	18
44	Elimination of LMP1-expressing cells from a monolayer of gastric cancer AGS cells. Oncotarget, 2017, 8, 39345-39355.	0.8	17
45	Tetrameric Ring Formation of Epstein-Barr Virus Polymerase Processivity Factor Is Crucial for Viral Replication. Journal of Virology, 2010, 84, 12589-12598.	1.5	15
46	Interaction between Basic Residues of Epstein-Barr Virus EBNA1 Protein and Cellular Chromatin Mediates Viral Plasmid Maintenance. Journal of Biological Chemistry, 2013, 288, 24189-24199.	1.6	15
47	Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. Journal of Virology, 2016, 90, 3873-3889.	1.5	14
48	The Human Cytomegalovirus UL76 Gene Regulates the Level of Expression of the UL77 Gene. PLoS ONE, 2010, 5, e11901.	1.1	13
49	A Herpesvirus Specific Motif of Epstein-Barr Virus DNA Polymerase Is Required for the Efficient Lytic Genome Synthesis. Scientific Reports, 2015, 5, 11767.	1.6	10
50	Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments. PLoS ONE, 2019, 14, e0222519.	1.1	8
51	Distinctive Effects of the Epstein-Barr Virus Family of Repeats on Viral Latent Gene Promoter Activity and B-Lymphocyte Transformation. Journal of Virology, 2009, 83, 9163-9174.	1.5	7
52	Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells. Viruses, 2018, 10, 171.	1.5	7
53	Virus–host interactions in carcinogenesis of Epstein-Barr virus-associated gastric carcinoma: Potential roles of lost ARID1A expression in its early stage. PLoS ONE, 2021, 16, e0256440.	1.1	7
54	Efficient Epstein-Barr Virus Progeny Production Mediated by Cancer-Derived LMP1 and Virally-Encoded microRNAs. Microorganisms, 2019, 7, 119.	1.6	4

#	Article	IF	CITATIONS
55	Epstein-Barr Virus Genome Deletions in Epstein-Barr Virus-Positive T/NK Cell Lymphoproliferative Diseases. Journal of Virology, 2022, 96, .	1.5	3
56	A global phylogenetic analysis of Japanese tonsil-derived Epstein–Barr virus strains using viral whole-genome cloning and long-read sequencing. Journal of General Virology, 2021, 102, .	1.3	1
57	MicroRNAs and Oncogenic Human Viruses. , 2014, , 155-182.		0