Andreia Palmeira

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3061493/andreia-palmeira-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

870 28 46 19 h-index g-index papers citations 48 1,022 4.07 4.3 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
46	Indole-Containing Pyrazino[2,1-]quinazoline-3,6-diones Active against and Trypanosomatids <i>ACS Medicinal Chemistry Letters</i> , 2022 , 13, 225-235	4.3	O
45	BP-M345, a New Diarylpentanoid with Promising Antimitotic Activity. <i>Molecules</i> , 2021 , 26,	4.8	1
44	Xanthones Active against Multidrug Resistance and Virulence Mechanisms of Bacteria. <i>Antibiotics</i> , 2021 , 10,	4.9	8
43	Antimicrobial Activity of a Library of Thioxanthones and Their Potential as Efflux Pump Inhibitors. <i>Pharmaceuticals</i> , 2021 , 14,	5.2	2
42	A Diarylpentanoid with Potential Activation of the p53 Pathway: Combination of in silico Screening Studies, Synthesis, and Biological Activity Evaluation. <i>ChemMedChem</i> , 2021 , 16, 2969-2981	3.7	2
41	Supramolecular Atropine Potentiometric Sensor. <i>Sensors</i> , 2021 , 21,	3.8	1
40	From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. <i>Molecules</i> , 2021 , 26,	4.8	23
39	Chiral derivatives of xanthones and benzophenones: Synthesis, enantioseparation, molecular docking, and tumor cell growth inhibition studies. <i>Chirality</i> , 2021 , 33, 153-166	2.1	2
38	Preliminary Virtual Screening Studies to Identify GRP78 Inhibitors Which May Interfere with SARS-CoV-2 Infection. <i>Pharmaceuticals</i> , 2020 , 13,	5.2	39
37	Oxygenated xanthones as P-glycoprotein modulators at the intestinal barrier: in vitro and docking studies. <i>Medicinal Chemistry Research</i> , 2020 , 29, 1041-1057	2.2	5
36	Flavonoid Glycosides with a Triazole Moiety for Marine Antifouling Applications: Synthesis and Biological Activity Evaluation. <i>Marine Drugs</i> , 2020 , 19,	6	4
35	New chiral stationary phases for liquid chromatography based on small molecules: Development, enantioresolution evaluation and chiral recognition mechanisms. <i>Chirality</i> , 2020 , 32, 81-97	2.1	5
34	Structure-Antifouling Activity Relationship and Molecular Targets of Bio-Inspired(thio)xanthones. <i>Biomolecules</i> , 2020 , 10,	5.9	9
33	New marine-derived indolymethyl pyrazinoquinazoline alkaloids with promising antimicrobial profiles <i>RSC Advances</i> , 2020 , 10, 31187-31204	3.7	2
32	In silico and in vitro antioxidant and cytotoxicity evaluation of oxygenated xanthone derivatives. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 17-26	5.9	21
31	Enantioseparation, recognition mechanisms and binding of xanthones on human serum albumin by liquid chromatography. <i>Bioanalysis</i> , 2019 , 11, 1255-1274	2.1	6
30	Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. <i>Molecules</i> , 2019 , 24,	4.8	16

(2014-2019)

Newly Synthesized Oxygenated Xanthones as Potential P-Glycoprotein Activators: , , and Studies. <i>Molecules</i> , 2019 , 24,	4.8	13
Design and synthesis of new inhibitors of p53MDM2 interaction with a chalcone scaffold. <i>Arabian Journal of Chemistry</i> , 2019 , 12, 4150-4161	5.9	16
SULFATION PATHWAYS: Potential benefits of a sulfated resveratrol derivative for topical application. <i>Journal of Molecular Endocrinology</i> , 2018 , 61, M27-M39	4.5	5
Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. <i>European Journal of Medicinal Chemistry</i> , 2018 , 151, 272-284	6.8	23
Targeting the MDM2-p53 protein-protein interaction with prenylchalcones: Synthesis of a small library and evaluation of potential antitumor activity. <i>European Journal of Medicinal Chemistry</i> , 2018 , 156, 711-721	6.8	18
New Alkoxy Flavone Derivatives Targeting Caspases: Synthesis and Antitumor Activity Evaluation. <i>Molecules</i> , 2018 , 24,	4.8	9
Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns. <i>Molecules</i> , 2018 , 23,	4.8	24
Resolution, determination of enantiomeric purity and chiral recognition mechanism of new xanthone derivatives on (S,S)-whelk-O1 stationary phase. <i>Chirality</i> , 2017 , 29, 247-256	2.1	13
Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents. <i>Journal of Chemistry</i> , 2017 , 2017, 1-16	2.3	25
Chiral Derivatives of Xanthones: Investigation of the Effect of Enantioselectivity on Inhibition of Cyclooxygenases (COX-1 and COX-2) and Binding Interaction with Human Serum Albumin. <i>Pharmaceuticals</i> , 2017 , 10,	5.2	14
Modulation of Autophagy by a Thioxanthone Decreases the Viability of Melanoma Cells. <i>Molecules</i> , 2016 , 21,	4.8	23
Screening a Small Library of Xanthones for Antitumor Activity and Identification of a Hit Compound which Induces Apoptosis. <i>Molecules</i> , 2016 , 21, 81	4.8	20
Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. <i>Medicinal Research Reviews</i> , 2016 , 36, 789-844	14.4	58
Transcription profiling of the Neurospora crassa response to a group of synthetic (thio)xanthones and a natural acetophenone. <i>Genomics Data</i> , 2015 , 4, 26-32		6
Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus. <i>Microbial Drug Resistance</i> , 2015 , 21, 404-15	2.9	19
P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. <i>Archives of Toxicology</i> , 2015 , 89, 1783-800	5.8	28
Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. <i>Archives of Toxicology</i> , 2014 , 88, 937-51	5.8	32
Interaction between hydroxyethyl starch and propofol: computational and laboratorial study. Journal of Biomolecular Structure and Dynamics, 2014, 32, 1864-75	3.6	9
	Molecules, 2019, 24, Design and synthesis of new inhibitors of p53MDM2 interaction with a chalcone scaffold. Arabian Journal of Chemistry, 2019, 12, 4150-4161 SULFATION PATHWAYS: Potential benefits of a sulfated resveratrol derivative for topical application. Journal of Molecular Endocrinology, 2018, 61, M27-M39 Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. European Journal of Medicinal Chemistry, 2018, 151, 272-284 Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. European Journal of Medicinal Chemistry, 2018, 151, 272-284 Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. European Journal of Medicinal Chemistry, 2018, 156, 711-721 New Alkoxy Flavone Derivatives Targeting Caspases: Synthesis and Antitumor Activity Evaluation. Molecules, 2018, 24, Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns. Molecules, 2018, 23, Resolution, determination of enantiomeric purity and chiral recognition mechanism of new xanthone derivatives on (S.S)-whelk-O1 stationary phase. Chirality, 2017, 29, 247-256 Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents. Journal of Chemistry, 2017, 2017, 1-16 Chiral Derivatives of Xanthones: Investigation of the Effect of Enantioselectivity on Inhibition of Cyclooxygenases (COX-1 and COX-2) and Binding Interaction with Human Serum Albumin. Pharmaceuticals, 2017, 10, Modulation of Autophagy by a Thioxanthone Decreases the Viability of Melanoma Cells. Molecules, 2016, 21, 81 Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Medicinal Research Reviews, 2016, 36, 789-844 Transcription profiling of the Neurospora crassa response to a group of synthetic (thio)xanthones and a natural acetophenone. Genomics Data, 2015, 4, 26-32 Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant S	Design and synthesis of new inhibitors of p53MDM2 interaction with a chalcone scaffold. Arabian Journal of Chemistry, 2019, 12, 4150-4161 SULFATION PATHWAYS: Potential benefits of a sulfated resveratrol derivative for topical application. Journal of Molecular Endocrinalogy, 2018, 61, M27-M39 Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. European Journal of Medicinal Chemistry, 2018, 151, 272-284 Targeting the MDM2-p53 protein-protein interaction with prenylchalcones: Synthesis of a small library and evaluation of potential antitumor activity. European Journal of Medicinal Chemistry, 2018, 156, 711-721 Rew Alkoxy Flavone Derivatives Targeting Caspases: Synthesis and Antitumor Activity Evaluation. Molecules, 2018, 24, Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns. Molecules, 2018, 23, Resolution, determination of enantiomeric purity and chiral recognition mechanism of new xanthone derivatives on (S,5)-whelk-O1 stationary phase. Chiralby, 2017, 29, 247-256 Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents. Journal of Chemistry, 2017, 2017, 21-1-16 Chiral Derivatives of Xanthones: Investigation of the Effect of Enantioselectivity on Inhibition of Cycloxygenases (COX-1 and COX-2) and Binding Interaction with Human Serum Albumin. Pharmaceuticals, 2017, 10, Modulation of Autophagy by a Thioxanthone Decreases the Viability of Melanoma Cells. Molecules, 2016, 21, 81 Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Medicinal Research Reviews, 2016, 36, 789-844 Transcription profiling of the Neurospora crassa response to a group of synthetic (thio)xanthones and a natural acetophenone. Genomics Data, 2015, 4, 26-32 Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus. Microbial Drug Resistance, 2015, 21, 404-15 P-glycoprotein induction in Cacc-2 c

11	Colchicine effect on P-glycoprotein expression and activity: in silico and in vitro studies. <i>Chemico-Biological Interactions</i> , 2014 , 218, 50-62	5	27
10	Bioactive xanthones with effect on P-glycoprotein and prediction of intestinal absorption. <i>Medicinal Chemistry Research</i> , 2013 , 22, 2115-2123	2.2	15
9	Enantioresolution of chiral derivatives of xanthones on (S,S)-Whelk-O1 and L-phenylglycine stationary phases and chiral recognition mechanism by docking approach for (S,S)-Whelk-O1. <i>Chirality</i> , 2013 , 25, 89-100	2.1	28
8	Discovery of a new small-molecule inhibitor of p53-MDM2 interaction using a yeast-based approach. <i>Biochemical Pharmacology</i> , 2013 , 85, 1234-45	6	50
7	Sulfated small molecules targeting eBV in Burkitt lymphoma: from in silico screening to the evidence of in vitro effect on viral episomal DNA. <i>Chemical Biology and Drug Design</i> , 2013 , 81, 631-44	2.9	8
6	Development of novel rifampicin-derived P-glycoprotein activators/inducers. synthesis, in silico analysis and application in the RBE4 cell model, using paraquat as substrate. <i>PLoS ONE</i> , 2013 , 8, e74425	3.7	18
5	Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. <i>Biochemical Pharmacology</i> , 2012 , 83, 57-68	6	93
4	Multidrug resistance reversal effects of aminated thioxanthones and interaction with cytochrome P450 3A4. <i>Journal of Pharmacy and Pharmaceutical Sciences</i> , 2012 , 15, 31-45	3.4	9
3	Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective. <i>Current Pharmaceutical Design</i> , 2012 , 18, 4197-214	3.3	38
2	New uses for old drugs: pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. <i>Chemical Biology and Drug Design</i> , 2011 , 78, 57-72	2.9	47
1	Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. <i>Chemical Biology and Drug Design</i> , 2010 , 76, 43-58	2.9	36