
William H Schlesinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3061430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transport of organic carbon in the world's rivers. Tellus, 2022, 33, 172.	0.4	159
2	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
3	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	5.8	21
4	Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry, 2022, 161, 9-17.	1.7	21
5	Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry, 2021, 154, 427-432.	1.7	18
6	Global emissions of NH ₃ , NO _x , and N ₂ O from biomass burning and the impact of climate change. Journal of the Air and Waste Management Association, 2021, 71, 102-114.	0.9	17
7	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	5.8	46
8	Global Biogeochemical Cycle of Lithium. Global Biogeochemical Cycles, 2021, 35, e2021GB006999.	1.9	18
9	Global Biogeochemical Cycle of Fluorine. Global Biogeochemical Cycles, 2020, 34, e2020GB006722.	1.9	25
10	The Oceans. , 2020, , 361-429.		0
11	The Global Cycles of Nitrogen, Phosphorus and Potassium. , 2020, , 483-508.		2
12	The Atmosphere. , 2020, , 51-97.		8
13	Abiotic hydrogen (H ₂) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13283-13293.	3.3	29
14	Characterization of the Global Sources of Atmospheric Ammonia from Agricultural Soils. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031684.	1.2	18
15	A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 2019, 7, 865-872.	2.4	122
16	Reply to Selin: Human impacts on the atmospheric burden of trace metals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2668-E2668.	3.3	0
17	Natural climate solutions for the United States. Science Advances, 2018, 4, eaat1869.	4.7	333
18	Reconsidering bioenergy given the urgency of climate protection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9642-9645.	3.3	20

#	Article	IF	CITATIONS
19	Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11645-11650.	3.3	1,709
20	Is nitrogen the next carbon?. Earth's Future, 2017, 5, 894-904.	2.4	182
21	Global biogeochemical cycle of vanadium. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11092-E11100.	3.3	166
22	Global boron cycle in the Anthropocene. Global Biogeochemical Cycles, 2016, 30, 219-230.	1.9	34
23	Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry, 2013, 114, 25-40.	1.7	51
24	Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2052-2057.	3.3	264
25	Reactive nitrogen emissions from crop and livestock farming in India. Atmospheric Environment, 2012, 47, 92-103.	1.9	71
26	A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO ₂ . Frontiers in Ecology and the Environment, 2011, 9, 552-560.	1.9	2,354
27	On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 203-208.	3.3	790
28	Effects of Agriculture upon the Air Quality and Climate: Research, Policy, and Regulations. Environmental Science & Technology, 2009, 43, 4234-4240.	4.6	219
29	Farming pollution. Nature Geoscience, 2008, 1, 409-411.	5.4	93
30	Global change: The nitrogen cycle and rivers. Water Resources Research, 2006, 42, .	1.7	73
31	Global change ecology. Trends in Ecology and Evolution, 2006, 21, 348-351.	4.2	34
32	Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the United States of America, 2005, 102, 18052-18056.	3.3	880
33	BETTER LIVING THROUGH BIOGEOCHEMISTRY. Ecology, 2004, 85, 2402-2407.	1.5	30
34	The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia, 2002, 132, 567-578.	0.9	164
35	Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Change Biology, 2002, 8, 247-264.	4.2	211
36	FOREST LITTER PRODUCTION, CHEMISTRY, AND DECOMPOSITION FOLLOWING TWO YEARS OF FREE-AIR CO2ENRICHMENT. Ecology, 2001, 82, 470-484.	1.5	62

WILLIAM H SCHLESINGER

#	Article	IF	CITATIONS
37	Forecasting Agriculturally Driven Global Environmental Change. Science, 2001, 292, 281-284.	6.0	3,068
38	Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology, 2001, 7, 849-882.	4.2	281
39	Title is missing!. Climatic Change, 2001, 48, 417-425.	1.7	10
40	Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 2001, 52, 155-172.	1.7	118
41	CHANGES IN SOIL PHOSPHORUS DURING 200 YEARS OF SHIFTING CULTIVATION IN INDONESIA. Ecology, 2001, 82, 2769-2780.	1.5	107
42	CHANGES IN SOIL PHOSPHORUS DURING 200 YEARS OF SHIFTING CULTIVATION IN INDONESIA. , 2001, 82, 2769.		3
43	Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 2000, 6, 967-979.	4.2	189
44	Carbon sequestration in soils: some cautions amidst optimism. Agriculture, Ecosystems and Environment, 2000, 82, 121-127.	2.5	267
45	Title is missing!. Biogeochemistry, 2000, 49, 69-86.	1.7	112
46	Soil respiration and the global carbon cycle. , 2000, 48, 7-20.		1,400
47	Environmental controls on nitric oxide emission from northern Chihuahuan desert soils. Biogeochemistry, 2000, 50, 279-300.	1.7	71
48	Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. rainfall simulation experiments. Biogeochemistry, 1999, 45, 21-34.	1.7	139
49	A comparison of fractionation methods for forms of phosphorus in soils. Biogeochemistry, 1999, 47, 25-38.	1.7	48
50	Plant regulation of soil nutrient distribution in the northern Chihuahuan Desert. Plant Ecology, 1999, 145, 11-25.	0.7	112
51	Separation of Root Respiration from Total Soil Respiration Using Carbonâ€13 Labeling during Freeâ€Air Carbon Dioxide Enrichment (FACE). Soil Science Society of America Journal, 1999, 63, 1429-1435.	1.2	219
52	Net Primary Production of a Forest Ecosystem with Experimental CO2 Enrichment. Science, 1999, 284, 1177-1179.	6.0	460
53	Title is missing!. Biogeochemistry, 1999, 45, 21-34.	1.7	41
54	Title is missing!. Biogeochemistry, 1998, 40, 37-55.	1.7	97

#	Article	IF	CITATIONS
55	Plant-soil Interactions in Deserts. Biogeochemistry, 1998, 42, 169-187.	1.7	443
56	HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES. , 1997, 7, 737-750.		1,682
57	HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES. , 1997, 7, 737.		9
58	Archival photographs show no climate-induced changes in woody vegetation in the Sudan, 1943-1994*. Global Change Biology, 1996, 2, 137-141.	4.2	29
59	Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 1995, 9, 235-252.	1.9	854
60	On the Spatial Pattern of Soil Nutrients in Desert Ecosystems. Ecology, 1995, 77, 364-374.	1.5	1,083
61	Carbon stores in vegetation. Nature, 1992, 357, 447-448.	13.7	22
62	Factors Controlling Denitrification in a Chihuahuan Desert Ecosystem. Soil Science Society of America Journal, 1991, 55, 1694-1701.	1.2	118
63	Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348, 232-234.	13.7	642
64	Vegetation an unlikely answer. Nature, 1990, 348, 679-679.	13.7	4
65	Nitrogen loss from deserts in the southwestern United States. Biogeochemistry, 1990, 10, 67.	1.7	161
66	Edaphic limitations to growth and photosynthesis in Sierran and Great Basin vegetation. Oecologia, 1989, 78, 184-190.	0.9	46
67	Effects of Overland Flow on Plant Water Relations, Erosion, and Soil Water Percolation on a Mojave Desert Landscape. Soil Science Society of America Journal, 1989, 53, 1567-1572.	1.2	45
68	Ion and Sulfateâ€Isotope Ratios in Arid Soils Subject to Wind Erosion in the Southwestern USA. Soil Science Society of America Journal, 1988, 52, 54-58.	1.2	14
69	Plant response to variations in nitrogen availability in a desert shrubland community. Biogeochemistry, 1986, 2, 29-37.	1.7	100
70	The formation of caliche in soils of the Mojave Desert, California. Geochimica Et Cosmochimica Acta, 1985, 49, 57-66.	1.6	230
71	BIOMASS, PRODUCTION, AND LITTERFALL IN THE COASTAL SAGE SCRUB OF SOUTHERN CALIFORNIA. American Journal of Botany, 1981, 68, 24-33.	0.8	55
72	Phenology, productivity, and nutrient accumulation in the post-fire chaparral shrub Lotus scoparius. Oecologia, 1981, 50, 217-224.	0.9	21

#	Article	IF	CITATIONS
73	BIOMASS, PRODUCTION, AND LITTERFALL IN THE COASTAL SAGE SCRUB OF SOUTHERN CALIFORNIA. , 1981, 68, 24.		33
74	Biomass, Production, and Changes in the Availability of Light, Water, and Nutrients During the Development of Pure Stands of the Chaparral Shrub, Ceanothus Megacarpus, After Fire. Ecology, 1980, 61, 781-789.	1.5	92