List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3060960/publications.pdf Version: 2024-02-01

		9264	19190
213	15,834	74	118
papers	citations	h-index	g-index
236	236	236	8787
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen. ACS Catalysis, 2013, 3, 2655-2668.	11.2	584
2	Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science and Technology, 2011, 1, 179.	4.1	363
3	Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. Journal of Catalysis, 2010, 272, 191-194.	6.2	355
4	Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A: General, 2011, 392, 248-255.	4.3	297
5	Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Applied Catalysis A: General, 2011, 408, 1-24.	4.3	295
6	Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Applied Catalysis B: Environmental, 2011, 105, 117-127.	20.2	293
7	Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd–Ir Alloy Catalyst. ACS Catalysis, 2014, 4, 2718-2726.	11.2	289
8	Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nature Chemistry, 2010, 2, 478-483.	13.6	280
9	Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Applied Catalysis B: Environmental, 2010, 94, 318-326.	20.2	253
10	Total Hydrogenation of Furfural over a Silica‣upported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor. ChemCatChem, 2012, 4, 1791-1797.	3.7	241
11	Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel, 2013, 112, 654-661.	6.4	215
12	One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReO _x /SiO ₂ bifunctional catalyst. Green Chemistry, 2014, 16, 617-626.	9.0	215
13	Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst. Catalysis Communications, 2010, 12, 154-156.	3.3	210
14	Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 2017, 19, 2876-2924.	9.0	206
15	Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chemical Communications, 2013, 49, 7034.	4.1	195
16	Comparative study of Rh–MoOx and Rh–ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Applied Catalysis B: Environmental, 2012, 111-112, 27-37.	20.2	184
17	C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. Journal of Catalysis, 2012, 294, 171-183.	6.2	183
18	Polyoxovanadometalate-Catalyzed Selective Epoxidation of Alkenes with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2005, 44, 5136-5141.	13.8	181

#	Article	IF	CITATIONS
19	Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass. Bioresource Technology, 2015, 178, 53-64.	9.6	175
20	Direct Cyclic Carbonate Synthesis from CO ₂ and Diol over Carboxylation/Hydration Cascade Catalyst of CeO ₂ with 2-Cyanopyridine. ACS Catalysis, 2014, 4, 1893-1896.	11.2	167
21	Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Applied Catalysis B: Environmental, 2011, 102, 528-538.	20.2	166
22	Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. Journal of Materials Chemistry A, 2014, 2, 6688-6702.	10.3	166
23	Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Applied Catalysis A: General, 2012, 433-434, 128-134.	4.3	164
24	Chemoselective Hydrogenolysis of Tetrahydropyranâ€2â€methanol to 1,6â€Hexanediol over Rheniumâ€Modified Carbonâ€Supported Rhodium Catalysts. ChemCatChem, 2010, 2, 547-555.	3.7	159
25	Regenerability of Hydrotalciteâ€Derived Nickel–Iron Alloy Nanoparticles for Syngas Production from Biomass Tar. ChemSusChem, 2014, 7, 510-522.	6.8	159
26	Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. Journal of Catalysis, 2011, 280, 221-229.	6.2	156
27	1,3-Dipolar Cycloaddition of Organic Azides to Alkynes by a Dicopper-Substituted Silicotungstate. Journal of the American Chemical Society, 2008, 130, 15304-15310.	13.7	155
28	Ceria atalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2 yanopyridine. ChemSusChem, 2013, 6, 1341-1344.	6.8	153
29	Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO. Green Chemistry, 2014, 16, 2197-2203.	9.0	145
30	A Highly Active and Cokeâ€Resistant Steam Reforming Catalyst Comprising Uniform Nickel–Iron Alloy Nanoparticles. ChemSusChem, 2012, 5, 2312-2314.	6.8	144
31	Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar. International Journal of Hydrogen Energy, 2014, 39, 10959-10970.	7.1	144
32	Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. Journal of Catalysis, 2014, 318, 95-107.	6.2	142
33	One-Pot Conversion of Cellulose into <i>n</i> -Hexane over the Ir-ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with HZSM-5. ACS Sustainable Chemistry and Engineering, 2014, 2, 1819-1827.	6.7	140
34	Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catalysis Science and Technology, 2014, 4, 2535-2549.	4.1	140
35	Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Applied Catalysis B: Environmental, 2021, 285, 119805.	20.2	137
36	Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catalysis Today, 2012, 195, 136-143.	4.4	136

#	Article	IF	CITATIONS
37	Catalytic CO ₂ conversion to organic carbonates with alcohols in combination with dehydration system. Catalysis Science and Technology, 2014, 4, 2830-2845.	4.1	136
38	Direct conversion of <scp>CO₂</scp> with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology and Biotechnology, 2014, 89, 19-33.	3.2	135
39	High Turnover Numbers for the Catalytic Selective Epoxidation of Alkenes with 1 atm of Molecular Oxygen We acknowledge T. Hayashi (The University of Tokyo), M. Wada (Nippon Shokubai Co., Ltd.), and Y. Sumita (Nippon Shokubai Co., Ltd.) for their help with experiments. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture	13.8	134
40	Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Fuel, 2013, 103, 122-129.	6.4	130
41	Oneâ€Pot Conversion of Sugar and Sugar Polyols to <i>n</i> â€Alkanes without CC Dissociation over the Irâ€ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with Hâ€ZSMâ€5. ChemSusChem, 2013, 613-621.	66.8	128
42	Hydrogenolysis of 1,2â€Propanediol for the Production of Biopropanols from Glycerol. ChemSusChem, 2010, 3, 728-736.	6.8	125
43	Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chemistry, 2011, 13, 3406.	9.0	123
44	Catalytic Total Hydrodeoxygenation of Biomassâ€Derived Polyfunctionalized Substrates to Alkanes. ChemSusChem, 2015, 8, 1114-1132.	6.8	123
45	Hydrodeoxygenation of Vicinal OH Groups over Heterogeneous Rhenium Catalyst Promoted by Palladium and Ceria Support. Angewandte Chemie - International Edition, 2015, 54, 1897-1900.	13.8	122
46	Synthesis and Catalysis of Di- and Tetranuclear Metal Sandwich-Type Silicotungstates [(γ-SiW ₁₀ 0 ₃₆) ₂ M ₂ (μ-OH) ₂] <sup>10â^`[(γ-SiW₁₀O₃₆)₂M₄(μ+Sub>4-O)(μ-OH)<sub>6<td>⇒and ub>]<sup:< td=""><td>>121 </td></sup:<></td></sub></sup>	⇒and ub>] <sup:< td=""><td>>121 </td></sup:<>	> 121
47	Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni–Fe alloy nanoparticles. Applied Catalysis A: General, 2015, 506, 151-162.	4.3	119
48	[γ-1,2-H2SiV2W10O40] Immobilized on Surface-Modified SiO2 as a Heterogeneous Catalyst for Liquid-Phase Oxidation with H2O2. Chemistry - A European Journal, 2006, 12, 4176-4184.	3.3	118
49	Performance, structure and mechanism of Pd–Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone. Journal of Catalysis, 2013, 300, 205-216.	6.2	117
50	Nickel–iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties. Catalysis Science and Technology, 2017, 7, 3952-3979.	4.1	116
51	Structure of ReO _{<i>x</i>} Clusters Attached on the Ir Metal Surface in Ir–ReO _{<i>x</i>} /SiO ₂ for the Hydrogenolysis Reaction. Journal of Physical Chemistry C, 2012, 116, 23503-23514.	3.1	115
52	Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol over Metal Oxide Modified Ir Catalysts and Mechanistic Insight. ACS Catalysis, 2016, 6, 3600-3609.	11.2	115
53	Performance, Structure, and Mechanism of ReO _{<i>x</i>} –Pd/CeO ₂ Catalyst for Simultaneous Removal of Vicinal OH Groups with H ₂ . ACS Catalysis, 2016, 6, 3213-3226.	11.2	114
54	Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru–Mn catalyst. Applied Catalysis B: Environmental, 2016, 182, 193-203.	20.2	113

#	Article	IF	CITATIONS
55	Production of Biobutanediols by the Hydrogenolysis of Erythritol. ChemSusChem, 2012, 5, 1991-1999.	6.8	112
56	Deoxydehydration with Molecular Hydrogen over Ceria-Supported Rhenium Catalyst with Gold Promoter. ACS Catalysis, 2016, 6, 6393-6397.	11.2	106
57	Tandem Carboxylationâ€Hydration Reaction System from Methanol, CO ₂ and Benzonitrile to Dimethyl Carbonate and Benzamide Catalyzed by CeO ₂ . ChemCatChem, 2011, 3, 365-370.	3.7	104
58	Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent. Journal of Catalysis, 2013, 305, 191-203.	6.2	103
59	Highly Selective Sorption of Small Unsaturated Hydrocarbons by Nonporous Flexible Framework with Silver Ion. Journal of the American Chemical Society, 2008, 130, 12370-12376.	13.7	99
60	Synthesis of a Dialuminum-Substituted Silicotungstate and the Diastereoselective Cyclization of Citronellal Derivatives. Journal of the American Chemical Society, 2008, 130, 15872-15878.	13.7	99
61	Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Applied Catalysis A: General, 2010, 384, 165-170.	4.3	98
62	Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chemistry, 2013, 15, 1567.	9.0	98
63	Direct Copolymerization of CO2 and Diols. Scientific Reports, 2016, 6, 24038.	3.3	98
64	Characterization of Re–Pd/SiO ₂ Catalysts for Hydrogenation of Stearic Acid. ACS Catalysis, 2015, 5, 7034-7047.	11.2	96
65	Selective hydrogenation of higher saturated carboxylic acids to alcohols using a ReOx–Pd/SiO2 catalyst. Catalysis Science and Technology, 2012, 2, 2221.	4.1	94
66	Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids. Green Chemistry, 2016, 18, 165-175.	9.0	93
67	Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene. Applied Catalysis B: Environmental, 2012, 121-122, 95-104.	20.2	90
68	Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene. Applied Catalysis B: Environmental, 2016, 192, 171-181.	20.2	87
69	Hydrogenation of dicarboxylic acids to diols over Re–Pd catalysts. Catalysis Science and Technology, 2016, 6, 5668-5683.	4.1	87
70	CeO2-catalyzed direct synthesis of dialkylureas from CO2 and amines. Journal of Catalysis, 2016, 343, 75-85.	6.2	86
71	Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Processing Technology, 2019, 193, 404-422.	7.2	83
72	Development of Ni-Based Catalysts for Steam Reforming of Tar Derived from Biomass Pyrolysis. Chinese Journal of Catalysis, 2012, 33, 583-594.	14.0	80

#	Article	IF	CITATIONS
73	Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over Rhenium-Oxide-Modified Iridium Nanoparticles Coating Rutile Titania Support. ACS Catalysis, 2019, 9, 10913-10930.	11.2	80
74	Production of Renewable Hexanols from Mechanocatalytically Depolymerized Cellulose by Using Irâ€ReO _{<i>x</i>} /SiO ₂ catalyst. ChemSusChem, 2015, 8, 628-635.	6.8	77
75	Mechanism of [γ-H2SiV2W10O40]4Catalyzed Epoxidation of Alkenes with Hydrogen Peroxide. Inorganic Chemistry, 2007, 46, 1727-1736.	4.0	76
76	Selective Hydrogenation of Lactic Acid to 1,2â€Propanediol over Highly Active Ruthenium–Molybdenum Oxide Catalysts. ChemSusChem, 2015, 8, 1170-1178.	6.8	75
77	Hydrogenolysis of CO bond over Re-modified Ir catalyst in alkane solvent. Applied Catalysis A: General, 2013, 468, 418-425.	4.3	74
78	Production of renewable hydrogen by steam reforming of tar from biomass pyrolysis over supported Co catalysts. International Journal of Hydrogen Energy, 2013, 38, 3572-3581.	7.1	74
79	Perspective on catalyst development for glycerol reduction to C3 chemicals with molecular hydrogen. Research on Chemical Intermediates, 2018, 44, 3879-3903.	2.7	74
80	Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass. Applied Catalysis B: Environmental, 2014, 150-151, 82-92.	20.2	73
81	Erythritol: Another C4 Platform Chemical in Biomass Refinery. ACS Omega, 2020, 5, 2520-2530.	3.5	73
82	Preferential CO Oxidation in a H ₂ -Rich Stream on Ptâ^'ReO _{<i>x</i>} /SiO ₂ : Catalyst Structure and Reaction Mechanism. Journal of Physical Chemistry C, 2010, 114, 6518-6526.	3.1	72
83	Selective oxidation of glycerol to dihydroxyacetone over a Pd–Ag catalyst. Catalysis Science and Technology, 2012, 2, 1150.	4.1	72
84	Role of Re Species and Acid Cocatalyst on Ir-ReO _x /SiO ₂ in the C-O Hydrogenolysis of Biomass-Derived Substrates. Chemical Record, 2014, 14, 1041-1054.	5.8	72
85	Stable Low-Valence ReO _{<i>x</i>} Cluster Attached on Rh Metal Particles Formed by Hydrogen Reduction and Its Formation Mechanism. Journal of Physical Chemistry C, 2012, 116, 3079-3090.	3.1	70
86	Mechanistic Study of Hydrogen-Driven Deoxydehydration over Ceria-Supported Rhenium Catalyst Promoted by Au Nanoparticles. ACS Catalysis, 2018, 8, 584-595.	11.2	70
87	Highly active iridium–rhenium catalyst condensed on silica support for hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2019, 256, 117775.	20.2	70
88	CO ₂ Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO ₂ Catalyst in the Presence and Absence of 2 yanopyridine. Chemical Record, 2019, 19, 1354-1379.	5.8	70
89	Catalytic Conversions of Furfural to Pentanediols. Catalysis Surveys From Asia, 2015, 19, 249-256.	2.6	67
90	Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. Journal of Molecular Catalysis A, 2014, 388-389, 177-187.	4.8	65

#	Article	IF	CITATIONS
91	Efficient, regioselective epoxidation of dienes with hydrogen peroxide catalyzed by [γ-SiW10O34(H2O)2]4â^'â~†. Journal of Catalysis, 2004, 224, 224-228.	6.2	64
92	Direct Synthesis of Alternating Polycarbonates from CO ₂ and Diols by Using a Catalyst System of CeO ₂ and 2-Furonitrile. ACS Sustainable Chemistry and Engineering, 2019, 7, 6304-6315.	6.7	64
93	Selective hydrogenation of nitroarenes to aminoarenes using a MoO _x -modified Ru/SiO ₂ catalyst under mild conditions. Chemical Communications, 2017, 53, 3377-3380.	4.1	63
94	Cu Sub-Nanoparticles on Cu/CeO ₂ as an Effective Catalyst for Methanol Synthesis from Organic Carbonate by Hydrogenation. ACS Catalysis, 2016, 6, 376-380.	11.2	62
95	Catalyst Development for the Hydrogenolysis of Biomass-Derived Chemicals to Value-Added Ones. Catalysis Surveys From Asia, 2011, 15, 111-116.	2.6	61
96	Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar. Applied Catalysis B: Environmental, 2015, 179, 412-421.	20.2	61
97	Catalytic hydrogenation of amino acids to amino alcohols with complete retention of configuration. Chemical Communications, 2014, 50, 6656.	4.1	57
98	Hydrodeoxygenation of Guaiacol to Phenol over Ceria-Supported Iron Catalysts. ACS Catalysis, 2020, 10, 14624-14639.	11.2	55
99	<i>In Situ</i> Formed Fe Cation Modified Ir/MgO Catalyst for Selective Hydrogenation of Unsaturated Carbonyl Compounds. ACS Catalysis, 2017, 7, 5103-5111.	11.2	53
100	Catalytic Production of Branched Small Alkanes from Biohydrocarbons. ChemSusChem, 2015, 8, 2472-2475.	6.8	52
101	Synthesis of 2â€Butanol by Selective Hydrogenolysis of 1,4â€Anhydroerythritol over Molybdenum Oxideâ€Modified Rhodiumâ€Supported Silica. ChemSusChem, 2016, 9, 1680-1688.	6.8	51
102	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie - International Edition, 2018, 57, 8058-8062.	13.8	51
103	Insight into the Mechanism of Hydrogenation of Amino Acids to Amino Alcohols Catalyzed by a Heterogeneous MoO _{<i>x</i>} â€Modified Rh Catalyst. Chemistry - A European Journal, 2015, 21, 3097-3107.	3.3	49
104	Direct Catalytic Synthesis of <i>N</i> â€Arylcarbamates from CO ₂ , Anilines and Alcohols. ChemCatChem, 2018, 10, 4821-4825.	3.7	49
105	Catalytic performance and characterization of Co–Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar. Applied Catalysis B: Environmental, 2014, 160-161, 701-715.	20.2	47
106	Regioselectivity and Reaction Mechanism of Ru atalyzed Hydrogenolysis of Squalane and Model Alkanes. ChemSusChem, 2017, 10, 189-198.	6.8	47
107	High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen. Applied Catalysis B: Environmental, 2013, 140-141, 652-662.	20.2	44
108	Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior. Applied Energy, 2014, 132, 475-484.	10.1	44

#	Article	IF	CITATIONS
109	One-pot catalytic selective synthesis of 1,4-butanediol from 1,4-anhydroerythritol and hydrogen. Green Chemistry, 2018, 20, 2547-2557.	9.0	44
110	Selective Hydrodeoxygenation of 2-Furancarboxylic Acid to Valeric Acid over Molybdenum-Oxide-Modified Platinum Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 6253-6257.	6.7	43
111	Highly Efficient Synthesis of Alkyl <i>N</i> -Arylcarbamates from CO ₂ , Anilines, and Branched Alcohols with a Catalyst System of CeO ₂ and 2-Cyanopyridine. ACS Sustainable Chemistry and Engineering, 2019, 7, 16795-16802.	6.7	43
112	Effective NbO _{<i>x</i>} -Modified Ir/SiO ₂ Catalyst for Selective Gas-Phase Hydrogenation of Crotonaldehyde to Crotyl Alcohol. ACS Sustainable Chemistry and Engineering, 2017, 5, 3685-3697.	6.7	42
113	One-pot synthesis of 1,3-butanediol by 1,4-anhydroerythritol hydrogenolysis over a tungsten-modified platinum on silica catalyst. Green Chemistry, 2020, 22, 2375-2380.	9.0	42
114	Comparative study of Rh/MgO modified with Fe, Co or Ni for the catalytic partial oxidation of methane at short contact time. Part I: Characterization of catalysts. Applied Catalysis A: General, 2010, 378, 175-186.	4.3	41
115	Recent Developments of Heterogeneous Catalysts for Hydrogenation of Carboxylic Acids to their Corresponding Alcohols. Asian Journal of Organic Chemistry, 2020, 9, 126-143.	2.7	41
116	Design of supported metal catalysts modified with metal oxides for hydrodeoxygenation of biomass-related molecules. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 13-21.	5.9	41
117	Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers. Nature Communications, 2015, 6, 8580.	12.8	38
118	Sterically Controlled Esterification on Bis(μ-hydroxo) Dioxovanadium Site in γ-H2SiV2W10O404 Inorganic Chemistry, 2005, 44, 14-16.	4.0	37
119	Molecular design of selective oxidation catalyst with polyoxometalate. Catalysis Today, 2006, 117, 32-36.	4.4	37
120	Selective Hydrodeoxygenation of Cyclic Vicinal Diols to Cyclic Alcohols over Tungsten Oxide–Palladium Catalysts. ChemSusChem, 2014, 7, 2185-2192.	6.8	37
121	Supported Metal Catalysts for Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural. Journal of the Japan Petroleum Institute, 2017, 60, 1-9.	0.6	37
122	Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4â€Butanediol from 1,4â€Anhydroerythritol. ChemSusChem, 2019, 12, 3615-3626.	6.8	37
123	Synthesis and Structural Characterization of a Î ³ -Keggin-Type Dimeric Silicotungstate with a Bis(<i>μ</i> -hydroxo) Dizirconium Core [(Î ³ -SiW ₁₀ 0 ₃₆) ₂ Zr ₂ (<i>μ</i> -OH) ₂] ^{10 Inorganic Chemistry, 2007, 46, 8502-8504.}	4.0 /sup> <s< td=""><td>up>-</td></s<>	up>-
124	Catalytic conversion of sorbitol to gasoline-ranged products without external hydrogen over Pt-modified Ir-ReO x /SiO 2. Catalysis Today, 2016, 269, 122-131.	4.4	36
125	Hydrogenolysis of glycerol with in-situ produced H 2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReO x /SiO 2 catalyst. Catalysis Today, 2018, 303, 106-116.	4.4	36
126	Reaction of CO2 With Alcohols to Linear-, Cyclic-, and Poly-Carbonates Using CeO2-Based Catalysts. Frontiers in Energy Research, 2020, 8, .	2.3	35

#	Article	IF	CITATIONS
127	Reactivity of Bis(μ-hydroxo) Divanadium Site in γ-H2SiV2W10O404- with Hydroxo Compounds. Inorganic Chemistry, 2005, 44, 9068-9075.	4.0	34
128	Conversion of Glycerol to Ethylene Glycol over Pt-modified Ni Catalyst. Chemistry Letters, 2010, 39, 506-507.	1.3	34
129	Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii. Bioresource Technology, 2015, 191, 452-459.	9.6	33
130	Catalytic function of CeO2 in non-reductive conversion of CO2 with alcohols. Materials Today Sustainability, 2020, 9, 100035.	4.1	32
131	Regioselective hydrogenolysis of alga-derived squalane over silica-supported rutheniumâ€'vanadium catalyst. Fuel Processing Technology, 2018, 176, 249-257.	7.2	31
132	Preparation of Monodispersed Nanoparticles by Electrostatic Assembly of Keggin-Type Polyoxometalates and 1,4,7-Triazacyclononane-Based Transition-Metal Complexes. Chemistry of Materials, 2007, 19, 4694-4701.	6.7	30
133	Inorganic Cryptand: Sizeâ€Selective Strong Metallic Cation Encapsulation by a Disilicoicosatungstate (Si ₂ W ₂₀) Polyoxometalate. Angewandte Chemie - International Edition, 2009, 48, 7055-7058.	13.8	29
134	Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst Surface and OH Groups. Topics in Current Chemistry, 2014, 353, 127-162.	4.0	29
135	Oxidative Cleavage of Vicinal Diols with the Combination of Platinum and Vanadium Catalysts and Molecular Oxygen. ChemCatChem, 2016, 8, 1732-1738.	3.7	29
136	An effective combination catalyst of CeO ₂ and zeolite for the direct synthesis of diethyl carbonate from CO ₂ and ethanol with 2,2-diethoxypropane as a dehydrating agent. Green Chemistry, 2020, 22, 7321-7327.	9.0	29
137	Formation of a New, Strongly Basic Nitrogen Anion by Metal Oxide Modification. Journal of the American Chemical Society, 2017, 139, 11857-11867.	13.7	27
138	Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals. Chinese Chemical Letters, 2020, 31, 1071-1077.	9.0	27
139	Hydrodeoxygenation of potential platform chemicals derived from biomass to fuels and chemicals. Green Chemistry, 2022, 24, 5652-5690.	9.0	27
140	Comparative study of Rh/MgO modified with Fe, Co or Ni for the catalytic partial oxidation of methane at short contact time. Part II: Catalytic performance and bed temperature profile. Applied Catalysis A: General, 2010, 378, 187-194.	4.3	26
141	Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid derivatives over supported platinum catalysts. Green Chemistry, 2019, 21, 6133-6145.	9.0	26
142	Selective Hydrogenolysis of Erythritol over Irâ^'ReO _{<i>x</i>} /Rutileâ€īiO ₂ Catalyst. ChemSusChem, 2021, 14, 642-654.	6.8	26
143	Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Applied Catalysis B: Environmental, 2021, 292, 120164.	20.2	26
144	Scope and reaction mechanism of an aerobic oxidative alkyne homocoupling catalyzed by a di-copper-substituted silicotungstate. Catalysis Today, 2010, 157, 359-363.	4.4	25

#	Article	IF	CITATIONS
145	Amination of Alcohols with Ammonia in Water over Rh–In Catalyst. Chemistry Letters, 2014, 43, 822-824.	1.3	24
146	Guaiacol Hydrodeoxygenation over Iron–Ceria Catalysts with Platinum Single-Atom Alloy Clusters as a Promoter. ACS Catalysis, 2021, 11, 12794-12814.	11.2	24
147	Bis(μ-hydroxo) bridged di-vanadium-catalyzed selective epoxidation of alkenes with H2O2. Journal of Molecular Catalysis A, 2006, 251, 286-290.	4.8	23
148	Hydrodeoxygenation of C4–C6 sugar alcohols to diols or mono-alcohols with the retention of the carbon chain over a silica-supported tungsten oxide-modified platinum catalyst. Green Chemistry, 2021, 23, 5665-5679.	9.0	23
149	Direct Synthesis of Unsaturated Sugars from Methyl Glycosides. ACS Catalysis, 2019, 9, 3725-3729.	11.2	22
150	Combination of supported bimetallic rhodium–molybdenum catalyst and cerium oxide for hydrogenation of amide. Science and Technology of Advanced Materials, 2015, 16, 014901.	6.1	21
151	Selective <i>N</i> -Methylation of Aniline to <i>N</i> -Methylaniline with CO ₂ and H ₂ by CeO ₂ -supported Cu Sub-nanoparticle Catalyst. Chemistry Letters, 2017, 46, 1243-1246.	1.3	21
152	Selective hydrogenation of amides to alcohols in water solvent over a heterogeneous CeO ₂ -supported Ru catalyst. Chemical Communications, 2018, 54, 7503-7506.	4.1	21
153	Mechanistic Study on Deoxydehydration and Hydrogenation of Methyl Glycosides to Dideoxy Sugars over a ReO <i>_x</i> –Pd/CeO ₂ Catalyst. ACS Catalysis, 2020, 10, 12040-12051.	11.2	21
154	Detailed Characterization of MoO _{<i>x</i>} -Modified Rh Metal Particles by Ambient-Pressure XPS and DFT Calculations. Journal of Physical Chemistry C, 2021, 125, 4540-4549.	3.1	21
155	Reductive Conversion of Biomass-Derived Furancarboxylic Acids with Retention of Carboxylic Acid Moiety. Transactions of Tianjin University, 2021, 27, 165-179.	6.4	21
156	Direct synthesis of polycarbonate diols from atmospheric flow CO ₂ and diols without using dehydrating agents. Green Chemistry, 2021, 23, 5786-5796.	9.0	21
157	Production of Gasoline Fuel from Algaâ€Đerived Botryococcene by Hydrogenolysis over Ceria‣upported Ruthenium Catalyst. ChemCatChem, 2017, 9, 2701-2708.	3.7	20
158	Structure and Mechanism of Titania-Supported Platinum–Molybdenum Catalyst for Hydrodeoxygenation of 2-Furancarboxylic Acid to Valeric Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 9601-9612.	6.7	20
159	Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catalysis Science and Technology, 2020, 10, 3805-3824.	4.1	20
160	Comprehensive Study on Ni- or Ir-Based Alloy Catalysts in the Hydrogenation of Olefins and Mechanistic Insight. ACS Catalysis, 2021, 11, 3293-3309.	11.2	20
161	FTIR study of CO adsorption on Rh/MgO modified with Co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Physical Chemistry Chemical Physics, 2012, 14, 9204.	2.8	19
162	Structure of catalytically active Rh–In bimetallic phase for amination of alcohols. RSC Advances, 2014, 4, 28664.	3.6	18

#	Article	IF	CITATIONS
163	Efficient production of adipic acid from 2-methoxycyclohexanone by aerobic oxidation with a phosphotungstic acid catalyst. Green Chemistry, 2020, 22, 4962-4974.	9.0	18
164	Oxidative Câ^'C Cleavage of Ketols over Vanadium–Carbon Catalysts. ChemCatChem, 2017, 9, 3412-3419.	3.7	17
165	Demethoxylation of hydrogenated derivatives of guaiacol without external hydrogen over platinum catalyst. Molecular Catalysis, 2019, 471, 60-70.	2.0	17
166	Tungsten–zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol. Reaction Chemistry and Engineering, 2020, 5, 1237-1250.	3.7	17
167	Deoxydehydration of Biomassâ€Derived Polyols Over Silverâ€Modified Ceriaâ€Supported Rhenium Catalyst with Molecular Hydrogen. ChemSusChem, 2022, 15, .	6.8	17
168	A theoretical study of catalytic hydration reactions of ethylene. Journal of Computational Chemistry, 2000, 21, 1292-1304.	3.3	15
169	A nickel–iridium alloy as an efficient heterogeneous catalyst for hydrogenation of olefins. Chemical Communications, 2019, 55, 10519-10522.	4.1	15
170	Catalytic performance of hydrotalcite-like-compound-derived Ni-metal alloy catalyst for toluene reforming with gasoline engine exhaust model gas as reforming agent. Fuel Processing Technology, 2021, 218, 106837.	7.2	15
171	Titania-supported molybdenum oxide combined with Au nanoparticles as a hydrogen-driven deoxydehydration catalyst of diol compounds. Catalysis Science and Technology, 2022, 12, 2146-2161.	4.1	14
172	Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 800-805.	6.7	13
173	Recent Developments of Heterogeneous Catalysts for Selective Hydrogenation of Unsaturated Carbonyl Compounds to Unsaturated Alcohols. Journal of the Japan Petroleum Institute, 2019, 62, 106-119.	0.6	12
174	CeO ₂ -Catalyzed Synthesis of 2-Imidazolidinone from Ethylenediamine Carbamate. ACS Omega, 2021, 6, 27527-27535.	3.5	12
175	Synthesis of α-Hydroxy Ketones from Vicinal Diols by Selective Dehydrogenation over Ir–ReO <i>x</i> /SiO2 Catalyst. Chemistry Letters, 2014, 43, 334-336.	1.3	11
176	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie, 2018, 130, 8190-8194.	2.0	11
177	Reforming of toluene with simulated automobile exhaust gas over hydrotalcite-like-compound-derived Ni catalyst. Fuel Processing Technology, 2020, 209, 106545.	7.2	11
178	CeO2-catalyzed transformation of various amine carbamates into organic urea derivatives in corresponding amine solvent. Applied Catalysis A: General, 2022, 643, 118747.	4.3	11
179	Ring-opening polymerization of trimethylene carbonate to poly(trimethylene carbonate) diol over a heterogeneous high-temperature calcined CeO2 catalyst. Chemical Communications, 2018, 54, 14017-14020.	4.1	10
180	Combination of hydrotalcite-like-compound-derived Ni-Fe/Mg/Al and ceria-supported Rh catalysts for fuel reforming in exhaust gas recirculation system of gasoline engine. Fuel Processing Technology, 2022, 225, 107061.	7.2	10

#	Article	IF	CITATIONS
181	Hydrogenolysis of tetrahydrofuran-2-carboxylic acid over tungsten-modified rhodium catalyst. Applied Catalysis A: General, 2020, 602, 117723.	4.3	9
182	Activation of Hydrogen Peroxide by Polyoxometalates. , 2008, , 155-176.		8
183	Mechanism of Formation of Highly Dispersed Metallic Ruthenium Particles on Ceria Support by Heating and Reduction. Journal of Physical Chemistry C, 2019, 123, 20817-20828.	3.1	8
184	Synthesis of Secondary Monoalcohols from Terminal Vicinal Alcohols over Silica-Supported Rhenium-Modified Ruthenium Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 1220-1231.	6.7	8
185	Fabrication of FeO -ZrO2 nanostructures for automotive three-way catalysts by supercritical hydrothermal synthesis with supercritical CO2 drying. Journal of Supercritical Fluids, 2019, 147, 302-309.	3.2	7
186	Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catalysis Today, 2023, 410, 19-35.	4.4	7
187	51 A green route to epoxides: Catalytic selective epoxidation of alkenes with 1 atm molecular oxygen with 10000 turnover number. Studies in Surface Science and Catalysis, 2003, 145, 255-258.	1.5	6
188	Organic compound modification of CeO2 and 2-cyanopyridine hybrid catalyst in carbonate synthesis from CO2 and alcohols. Journal of CO2 Utilization, 2021, 54, 101744.	6.8	6
189	Heterogeneous Enantioselective Hydrogenation of Ketones by 2-Amino-2′-hydroxy-1,1′-binaphthyl-Modified CeO ₂ -Supported Ir Nanoclusters. ACS Catalysis, 2022, 12, 868-876.	11.2	6
190	Reaction Mechanism of Deoxydehydration by Ceria-Supported Monomeric Rhenium Catalysts: A Computational Study. Journal of Physical Chemistry C, 2022, 126, 11566-11573.	3.1	6
191	Hydrogen Atom Abstraction by Heterogeneous–Homogeneous Hybrid Catalyst of CeO ₂ and 2-Cyanopyridine via Redox of CeO ₂ for C–H Bond Oxidation with Air. ACS Catalysis, 2021, 11, 11867-11872.	11.2	5
192	Dehydration of Amides to Nitriles over Heterogeneous Silica‣upported Molybdenum Oxide Catalyst. ChemCatChem, 2022, 14, .	3.7	5
193	Production of Cellulose-derived Olefins and Applicability to Gasoline. Journal of the Japan Petroleum Institute, 2016, 59, 228-234.	0.6	4
194	Transformation of Diols to Ketones via Intramolecular Borrowing Hydrogen Mechanism. Chemistry Letters, 2017, 46, 1333-1336.	1.3	4
195	Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorganic Chemistry, 2021, 60, 12413-12424.	4.0	4
196	Production of Diols from Biomass. Biofuels and Biorefineries, 2017, , 343-373.	0.5	4
197	Unique catalytic properties of Ni–Ir alloy for the hydrogenation of <i>N</i> -heteroaromatics. Catalysis Science and Technology, 2022, 12, 2420-2425.	4.1	4
198	High Turnover Numbers for the Catalytic Selective Epoxidation of Alkenes with 1â€atm of Molecular Oxygen. Angewandte Chemie - International Edition, 2007, 46, 4006-4006.	13.8	3

#	Article	IF	CITATIONS
199	Selective Câ^'C Hydrogenolysis of Alkylbenzenes to Methylbenzenes with Suppression of Ring Hydrogenation. ChemCatChem, 2018, 10, 4172-4181.	3.7	3
200	One-Pot Conversion of Sugar and Sugar Polyols ton-Alkanes without CC Dissociation over the Ir-ReOx/SiO2Catalyst Combined with H-ZSM-5. ChemSusChem, 2013, 6, 548-548.	6.8	2
201	Preparation of Rh/CeO ₂ Using Supercritical CO ₂ and Its Catalytic Application for Automotive Exhaust. Journal of the Japan Petroleum Institute, 2013, 56, 312-316.	0.6	2
202	Production of Renewable Hexanols from Mechanocatalytically Depolymerized Cellulose by Using Ir-ReOx/SiO2catalyst. ChemSusChem, 2015, 8, 571-571.	6.8	2
203	Aerobic oxidation of alkyl chain in alkylphenols over combination of Pt and Pd catalysts. Applied Catalysis A: General, 2019, 569, 149-156.	4.3	2
204	Promoting effect of the alloy formation over Ni-Fe/Al2O3 catalysts for the steam reforming of biomass tar to synthesis gas. Materials Research Society Symposia Proceedings, 2011, 1326, 1.	0.1	1
205	Modification of iridium catalyst with rhenium oxide for the hydrogenolysis of glycerol to 1,3-propanediol. Materials Research Society Symposia Proceedings, 2011, 1326, 1.	0.1	1
206	Effective Heterogeneous MoO x â€Modified CeO 2 Catalyst for Michael Addition of Dimethyl Malonate to 2â€Cyclohexenâ€1â€one. ChemCatChem, 2021, 13, 4075.	3.7	1
207	Polyoxovanadometalate-Catalyzed Selective Epoxidation of Alkenes with Hydrogen Peroxide ChemInform, 2005, 36, no.	0.0	0
208	New Reaction Schemes for the Production of Biomass-Based Chemicals Created by Selective Catalytic Hydrogenolysis: Catalysts with Noble Metal and Tungsten. Green Chemistry and Sustainable Technology, 2016, , 203-225.	0.7	0
209	Self-Assembled Materials for Catalysis. , 2017, , 329-349.		0
210	One-pot production of dioctyl ether from 1,2-octanediol over rutile-titania-supported palladium-tungsten catalyst. Molecular Catalysis, 2020, , 111208.	2.0	0
211	Catalytically Active Interface between Noble Metal and Low-valence Transition Metal for C-O Hydrogenolysis. Hyomen Kagaku, 2011, 32, 439-444.	0.0	Ο
212	Catalytic Transformations of Furfural and its Derived Compounds into Pentanediols. Sustainable Chemistry Series, 2018, , 91-109.	0.1	0
213	Hydrogenation of n-octanoic acid over the MoPt alloy of Mo-Pt/SiO2 catalyst. Organic and Biomolecular Chemistry, 0, , .	2.8	Ο