Alexander V Artem'ev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3060808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyridylarsine-based Cu(<scp>i</scp>) complexes showing TADF mixed with fast phosphorescence: a speeding-up emission rate using arsine ligands. Dalton Transactions, 2022, 51, 1048-1055.	1.6	18
2	Trigonal planar clusters Ag@Ag3 supported by (2-PyCH2)3P ligands. Inorganic Chemistry Communication, 2022, 140, 109478.	1.8	3
3	New Approach toward Dual-Emissive Organic–Inorganic Hybrids by Integrating Mn(II) and Cu(I) Emission Centers in Ionic Crystals. ACS Applied Materials & Interfaces, 2022, 14, 31000-31009.	4.0	11
4	Controllable Synthesis and Luminescence Behavior of Tetrahedral Au@Cu ₄ and Au@Ag ₄ Clusters Supported by tris(2-Pyridyl)phosphine. Inorganic Chemistry, 2022, 61, 10925-10933.	1.9	11
5	A family of Mn(<scp>ii</scp>) complexes exhibiting strong photo- and triboluminescence as well as polymorphic luminescence. Inorganic Chemistry Frontiers, 2021, 8, 3767-3774.	3.0	24
6	Photo- and triboluminescent robust 1D polymers made of Mn(<scp>ii</scp>) halides and <i>meta</i> -carborane based bis(phosphine oxide). Inorganic Chemistry Frontiers, 2021, 8, 2261-2270.	3.0	31
7	Coordination-induced emission enhancement in copper(<scp>i</scp>) iodide coordination polymers supported by 2-(alkylsulfanyl)pyrimidines. Dalton Transactions, 2021, 50, 9317-9330.	1.6	17
8	Luminescent Re(I) scorpionates supported by tris(2-pyridyl)phosphine and its derivatives. Inorganica Chimica Acta, 2021, 516, 120136.	1.2	4
9	Selenium Nanocomposites in Natural Matrices as Potato Recovery Agent. International Journal of Molecular Sciences, 2021, 22, 4576.	1.8	12
10	Silver(I)–Organic Frameworks Showing Remarkable Thermo-, Solvato- And Vapochromic Phosphorescence As Well As Reversible Solvent-Driven 3D-to-0D Transformations. Inorganic Chemistry, 2021, 60, 6680-6687.	1.9	29
11	Beyond Classical Coordination Chemistry: The First Case of a Triply Bridging Phosphine Ligand. Angewandte Chemie, 2021, 133, 12685-12692.	1.6	3
12	Beyond Classical Coordination Chemistry: The First Case of a Triply Bridging Phosphine Ligand. Angewandte Chemie - International Edition, 2021, 60, 12577-12584.	7.2	28
13	Cu(I) complexes designed on 2-pyrimidylphosphine and 1,4-dicyanobenzene: Synthesis and thermally activated delayed fluorescence. Inorganica Chimica Acta, 2021, 521, 120347.	1.2	9
14	A family of brightly emissive homo- and mixed-halomanganates(II): The effect of halide on optical and magnetic properties. Journal of Luminescence, 2021, 236, 118069.	1.5	9
15	Synthesis and study of Re(I) tricarbonyl complexes based on octachloro-1,10-phenanthroline: Towards deep red-to-NIR emitters. Polyhedron, 2021, 209, 115484.	1.0	9
16	Bright photo- and triboluminescence of centrosymmetric Eu(<scp>iii</scp>) and Tb(<scp>iii</scp>) complexes with phosphine oxides containing azaheterocycles. New Journal of Chemistry, 2021, 45, 13869-13876.	1.4	13
17	Luminescent [Cu8I8L6] wheel and [Cu2I2L3] cage assembled from CuI and 3,6-bis(diphenylphosphino)pyridazine. Mendeleev Communications, 2021, 31, 804-806.	0.6	4
18	Green- and red-phosphorescent Mn(II) iodide complexes derived from	1.0	7

⁸ 1,3-bis(diphenylphosphinyl)propane. Polyhedron, 2020, 188, 114706.

Alexander V Artem'ev

#	Article	IF	CITATIONS
19	Dicopper(I) Paddle-Wheel Complexes with Thermally Activated Delayed Fluorescence Adjusted by Ancillary Ligands. Inorganic Chemistry, 2020, 59, 10699-10706.	1.9	37
20	Family of Robust and Strongly Luminescent Cul-Based Hybrid Networks Made of Ionic and Dative Bonds. Chemistry of Materials, 2020, 32, 10708-10718.	3.2	49
21	Luminescence behaviour of Au(<scp>i</scp>)–Cu(<scp>i</scp>) heterobimetallic coordination polymers based on alkynyl-tris(2-pyridyl)phosphine Au(<scp>i</scp>) complexes. Dalton Transactions, 2020, 49, 13430-13439.	1.6	15
22	Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine. Inorganics, 2020, 8, 46.	1.2	11
23	New silver(i) thiazole-based coordination polymers: structural and photophysical investigation. Mendeleev Communications, 2020, 30, 728-730.	0.6	10
24	A copper(<scp>i</scp>) bromide organic–inorganic zwitterionic coordination compound with a new type of core: structure, luminescence properties, and DFT calculations. New Journal of Chemistry, 2020, 44, 9858-9862.	1.4	6
25	Trinuclear M3S4 cluster complexes with hemilabile phosphino-thioether ligands: Some experimental and theoretical aspects. Inorganica Chimica Acta, 2020, 508, 119645.	1.2	3
26	Efficient one-pot synthesis of diphenyl(pyrazin-2-yl)phosphine and its AgI, AuI and PtII complexes. Mendeleev Communications, 2020, 30, 305-307.	0.6	5
27	0D to 3D Coordination Assemblies Engineered on Silver(I) Salts and 2â€(Alkylsulfanyl)azine Ligands: Crystal Structures, Dual Luminescence, and Cytotoxic Activity. European Journal of Inorganic Chemistry, 2020, 2020, 1635-1644.	1.0	22
28	Heterobimetallic PtII–AgI complex supported by diphenyl(2-pyrimidyl)phosphine: Synthesis and thermochromic photoluminescence. Inorganic Chemistry Communication, 2020, 115, 107862.	1.8	5
29	New Cu(<scp>i</scp>) halide complexes showing TADF combined with room temperature phosphorescence: the balance tuned by halogens. Dalton Transactions, 2020, 49, 3155-3163.	1.6	47
30	Manganese(II) Thiocyanate Complexes with Bis(phosphine Oxide) Ligands: Synthesis and Excitation Wavelengthâ€Đependent Multicolor Luminescence. European Journal of Inorganic Chemistry, 2020, 2020, 695-703.	1.0	28
31	Synthesis of dual emitting iodocuprates: can solvents switch the reaction outcome?. Inorganic Chemistry Frontiers, 2020, 7, 2195-2203.	3.0	15
32	Copper(<scp>i</scp>) halide polymers derived from tris[2-(pyridin-2-yl)ethyl]phosphine: halogen-tunable colorful luminescence spanning from deep blue to green. New Journal of Chemistry, 2020, 44, 6916-6922.	1.4	31
33	A layered Ag(I)-based coordination polymer showing sky-blue luminescence and antibacterial activity. Inorganic Chemistry Communication, 2019, 108, 107513.	1.8	29
34	Photoluminescence of Ag(i) complexes with a square-planar coordination geometry: the first observation. Inorganic Chemistry Frontiers, 2019, 6, 2855-2864.	3.0	17
35	Synthesis, Structure and Emission Properties of [Cu2(μ2-I)2L4] Complex Based on 2-(Methylthio)Pyrazine. Journal of Structural Chemistry, 2019, 60, 967-971.	0.3	1
36	A red-emitting Mn(II)-based coordination polymer build on 1,2,4,5-tetrakis(diphenylphosphinyl)benzene. Inorganic Chemistry Communication, 2019, 107, 107473.	1.8	34

#	Article	IF	CITATIONS
37	Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu ₄ 1 ₆ } clusters from [alkyl-P(2-Py) ₃] ⁺ salts and Cul: when size matters. Dalton Transactions, 2019, 48, 2328-2337.	1.6	41
38	Chemoselective mechanochemical route toward a bright TADF-emitting Cul-based coordination polymer. Inorganic Chemistry Frontiers, 2019, 6, 671-679.	3.0	31
39	Self-assembly of Ag(I)-based complexes and layered coordination polymers bridged by (2-thiazolyl)sulfides. Inorganica Chimica Acta, 2019, 489, 19-26.	1.2	35
40	Cul-Based Coordination Polymer Assembled from a 2-Pyridyl Sulfide Ligand: Synthesis and Luminescent Properties. Journal of Structural Chemistry, 2019, 60, 617-622.	0.3	5
41	Silver(I) and gold(I) complexes with tris[2-(2-pyridyl)ethyl]phosphine. Inorganica Chimica Acta, 2019, 494, 78-83.	1.2	21
42	Luminescence of the Mn ²⁺ ion in non- <i>O</i> _h and <i>T</i> _d coordination environments: the missing case of square pyramid. Dalton Transactions, 2019, 48, 16448-16456.	1.6	40
43	Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(<scp>i</scp>) complexes: strong solvation-induced emission enhancement. Inorganic Chemistry Frontiers, 2019, 6, 3168-3176.	3.0	43
44	Bis(dicyclohexylselenophosphinyl)selenide, [Cy2P(Se)]2Se: Synthesis, molecular structure and application for self-assembly of a tetrahedral Cu(l) cluster. Journal of Molecular Structure, 2018, 1160, 208-214.	1.8	0
45	Bright green-to-yellow emitting Cu(<scp>i</scp>) complexes based on bis(2-pyridyl)phosphine oxides: synthesis, structure and effective thermally activated-delayed fluorescence. Dalton Transactions, 2018, 47, 2701-2710.	1.6	33
46	"Two-in-one―organic–inorganic hybrid Mn ^{II} complexes exhibiting dual-emissive phosphorescence. Dalton Transactions, 2018, 47, 7306-7315.	1.6	56
47	Deep-red phosphorescent organic–inorganic hybrid Mn(II) complexes based on 2-(diphenylphosphoryl)-N,N-diethylacetamide ligand. Polyhedron, 2018, 148, 184-188.	1.0	18
48	Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo ₃ S ₄ cluster and its effect on hydrogenation catalysis. New Journal of Chemistry, 2018, 42, 17708-17717.	1.4	7
49	Reaction of (2-methoxyprop-2-yl)diphenylphosphine oxide with alkyl bromides. Mendeleev Communications, 2018, 28, 290-291.	0.6	1
50	Cul-based coordination polymers with 2-thiazolyl sulfide ligands: First examples. Polyhedron, 2018, 151, 171-176.	1.0	10
51	[Cu4l73â^']n: A novel 1-D iodocuprate aggregate. Journal of Molecular Structure, 2018, 1173, 743-749.	1.8	3
52	Organic-inorganic hybrid iodobismuthate, [Bi(L) 4 (H 2 O)]Bi 3 I 12 , based on tris(2-pyridyl)phosphine oxide (L): Synthesis, structure and air-oxidation into [Bi(L) 4] 2 [Bi 4 I 16 (I 3) 2]. Inorganic Chemistry Communication, 2018, 93, 47-51.	1.8	10
53	Variable coordination of tris(2-pyridyl)phosphine and its oxide toward M(hfac) ₂ : a metal-specifiable switching between the formation of mono- and bis-scorpionate complexes. Dalton Transactions, 2017, 46, 5965-5975.	1.6	18
54	Unexpected formation of 1,4-diphenylbutylphosphinic acid from 1,4-diphenylbuta-1,3-diene and elemental phosphorus via the Trofimov–Gusarova reaction. Mendeleev Communications, 2017, 27, 137-138.	0.6	6

#	Article	IF	CITATIONS
55	Four-Component Reaction between Secondary Phosphines, Primary Amines, Aldehydes, and Chalcogens: A Facile Access to Functionalized α-Aminophosphine Chalcogenides. Synthesis, 2017, 49, 677-684.	1.2	4
56	A new family of clusters containing a silver-centered tetracapped [Ag@Ag ₄ (μ ₃ -P) ₄] tetrahedron, inscribed within a N ₁₂ icosahedron. Dalton Transactions, 2017, 46, 12425-12429.	1.6	29
57	A new access to tri(1-naphthyl)phosphine and its catalytically active palladacycles and luminescent Cu(I) complex. Inorganic Chemistry Communication, 2017, 86, 94-97.	1.8	12
58	Luminescent Ag(I) scorpionates based on tris(2-pyridyl)phosphine oxide: Synthesis and cytotoxic activity evaluation. Polyhedron, 2017, 138, 218-224.	1.0	21
59	First cyclometallated Pd(II) diselenophosphinate: Synthesis, structural and theoretical investigation. Journal of Molecular Structure, 2017, 1147, 345-350.	1.8	0
60	Efficient One-Pot Synthesis of Mono- and Bis[di(2-pyridyl)phosphine Oxides] from Tris(2-pyridyl)phosphine. Synlett, 2016, 27, 2451-2454.	1.0	8
61	Luminescent Cu ^I thiocyanate complexes based on tris(2-pyridyl)phosphine and its oxide: from mono-, di- and trinuclear species to coordination polymers. New Journal of Chemistry, 2016, 40, 10028-10040.	1.4	28
62	Synthesis of tris[2-(2-furyl)ethyl]phosphine its chalcogenides and Pdii complex. Mendeleev Communications, 2016, 26, 314-316.	0.6	5
63	Straightforward Solventâ€Free Synthesis of Tertiary Phosphine Chalcogenides from Secondary Phosphines, Electronâ€Rich Alkenes, and Elemental Sulfur or Selenium. Heteroatom Chemistry, 2016, 27, 48-53.	0.4	8
64	New heterospin chain-polymers based on Cu(hfac)2 complex with TEMPO derivatives bearing β-(oxy)acrylate moiety: Synthesis, structural and magnetic properties. Polyhedron, 2016, 119, 293-299.	1.0	12
65	Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene. Tetrahedron, 2016, 72, 4414-4422.	1.0	13
66	First heteroleptic diselenophosphinate and thioselenophosphinate nickel(II) complexes with N-donor co-ligands. Polyhedron, 2016, 111, 79-85.	1.0	5
67	Reaction of elemental phosphorus with α-methylstyrenes: one-pot synthesis of secondary and tertiary phosphines, prospective bulky ligands for Pd(II) catalysts. Tetrahedron, 2016, 72, 443-450.	1.0	16
68	An Expedient Access to γâ€Ketophosphine Chalcogenides via the Chemo―and Regioselective Addition of Secondary Phosphine Chalcogenides to β,γâ€Ethylenic Ketones. Heteroatom Chemistry, 2015, 26, 455-462.	0.4	3
69	Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides. Beilstein Journal of Organic Chemistry, 2015, 11, 1985-1990.	1.3	9
70	Unexpected N,N'-coordination of tris(2-pyridyl)-phosphine chalcogenides to PdCl2. Mendeleev Communications, 2015, 25, 196-198.	0.6	13
71	Synthesis of the first chalcogen-centered diselenophosphinato Zn(II) clusters, [Zn4(μ4-X){Se2PR2}6] (XÂ=ÂS or Se), and a zigzag polymer {ZnBr(μ-Se2PR2)[PyNO]}n. Journal of Organometallic Chemistry, 2015, 781, 72-76.	0.8	7
72	Electrophilic addition of thioselenophosphinic acids to vinyl sulfides and selenides. Journal of Sulfur Chemistry, 2015, 36, 216-226.	1.0	4

#	Article	IF	CITATIONS
73	Atom-economic synthesis of highly branched functional â€~tripod-like' triphosphine sulfides. Journal of Sulfur Chemistry, 2015, 36, 227-233.	1.0	1
74	Complexation of tris(2-pyridyl)phosphine chalcogenides with copper(I) halides: The selective formation of scorpionate complexes, [Cu(N,N′,N″-2-Py3PX)Hal] (X=O, S and Se). Polyhedron, 2015, 90, 1-6.	1.0	8
75	Dual reactivity of secondary phosphines and their chalcogenides towards 1-(vinyloxy)alkylferrocenes: the switch between α- and β-addition. Tetrahedron, 2015, 71, 1998-2003.	1.0	6
76	The Direct Phosphorylation Of 2-, 3-, and 4-Methylstyrenes and 2,4,6-Trimethylstyrene with Elemental Phosphorus <i>VIA</i> Trofimov–Gusarova Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1455-1463.	0.8	3
77	Catalyst- and Solvent-Free Stereoselective Addition of Secondary Phosphine Chalcogenides to Alkynes. Synthesis, 2015, 47, 263-271.	1.2	14
78	Regioselective Addition of Dithiophosphinic Acids to Vinyl Sulfides and Selenides: An Efficient Route Toward Functional Dithiophosphinates. Heteroatom Chemistry, 2015, 26, 72-78.	0.4	4
79	Hydroalkoxylation of alkynes by a nitroxyl containing alcohol, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl: synthesis of spin-labeled enol ethers. Arkivoc, 2015, 2015, 330-346.	0.3	1
80	Synthesis of Functional Tripodal Phosphines with Amino and Ether Groups by the Hydrophosphination of Trivinyl Ethers with Secondary Phosphines. Synthesis, 2014, 46, 653-659.	1.2	8
81	Catalyst-Free and Solvent-Free Addition of P(Se)–H Species to Alkenes: A Straightforward Access to Tertiary Phosphine Selenides. Synthesis, 2014, 46, 2656-2662.	1.2	13
82	A shortcut to tris[2-(4-hydroxyphenyl)ethyl]phosphine oxide and 2-(4-hydroxyphenyl)ethylphosphinic acid via reaction of elemental phosphorus with 4-tert-butoxystyrene. Mendeleev Communications, 2014, 24, 29-31.	0.6	5
83	Reaction of Vinyl Selenides with Secondary Phosphines and Elemental Selenium: Oneâ€Pot Selective Synthesis of a New Family of Diselenophosphinic <i>Se</i> â€Esters. Heteroatom Chemistry, 2014, 25, 135-139.	0.4	8
84	Facile Nonâ€Catalyzed Synthesis of Tertiary Phosphine Sulfides by Regioselective Addition of Secondary Phosphine Sulfides to Alkenes. European Journal of Organic Chemistry, 2014, 2014, 2516-2521.	1.2	17
85	A new convenient synthetic route to metal diselenophosphinates: Synthesis and characterization of [M2(Se2PPh2)4] (MÂ=ÂZn, Cd and Hg) complexes. Journal of Organometallic Chemistry, 2014, 758, 60-64.	0.8	6
86	DFT study and dynamic NMR evidence for cis-trans conformational isomerism in square planar Ni(II) thioselenophosphinate, Ni(SeSPPh2)2. Journal of Organometallic Chemistry, 2014, 768, 151-156.	0.8	10
87	Tuneable superbase-catalyzed vinylation of α-hydroxyalkylferrocenes with alkynes. Tetrahedron, 2014, 70, 5954-5960.	1.0	13
88	Synthesis and comparative structural study of tris-chelated Sb(III), Bi(III) and Cr(III) diselenophosphinato complexes. Polyhedron, 2014, 68, 53-59.	1.0	8
89	One-pot atom-economic synthesis of Se-[alkyl(aryl)sulfanylethyl]diselenophosphinates from vinyl sulfides, secondary phosphines and elemental selenium. Journal of Sulfur Chemistry, 2013, 34, 474-479.	1.0	3
90	Direct phosphorylation of β-alkylstyrenes with elemental phosphorus under Trofimov-Gusarova reaction conditions. Russian Journal of Organic Chemistry, 2013, 49, 1839-1841.	0.3	4

#	Article	IF	CITATIONS
91	Alkali Metal Thioselenophosphinates, M[SeSPR ₂]: Oneâ€Pot Multicomponent Synthesis, DFT Study, and Synthetic Application. European Journal of Inorganic Chemistry, 2013, 2013, 415-426.	1.0	12
92	Three-component reaction between secondary phosphine sulfides, elemental selenium and vinyl ethers: the first examples of Markovnikov addition of thioselenophosphinic acids to double bond. Tetrahedron, 2013, 69, 6185-6195.	1.0	7
93	Three-component reaction between elemental sulfur, primary phosphines, and amines: straightforward synthesis of organylammonium trithiophosphonates. Journal of Sulfur Chemistry, 2013, 34, 227-232.	1.0	2
94	Chemoselective synthesis of first representatives of bis(diorganothiophosphinyl)selenides, (R2P=S)2Se, from secondary phosphine sulfides and elemental selenium. Inorganic Chemistry Communication, 2013, 30, 124-127.	1.8	1
95	Atom-Economic, Metal- and Halogen-Free Synthesis of Podands: α,ï‰-Diphosphines and Their Chalcogenides Separated by Alkane Diol Spacers. Synthesis, 2012, 44, 2938-2946.	1.2	6
96	Three-Component Reaction between Vinyl Ethers, Secondary Phosphines, and Elemental Selenium: One-Pot Synthesis of 1-(Alkoxy)ethyl and 1-(Aryloxy)ethyl Phosphinodiselenoates. Synthesis, 2012, 44, 431-438.	1.2	6
97	Tris(2-pyridyl)phosphine: a straightforward microwave-assisted synthesis from 2-bromopyridine and red phosphorus and coordination with cobalt(ii) dichloride. Mendeleev Communications, 2012, 22, 187-188.	0.6	21
98	Oneâ€Pot Halogenâ€Free Synthesis of 2,3â€Dihydroâ€1Hâ€indenâ€2â€ylâ€phosphinic Acid from 1Hâ€indene Phosphorus via the Trofimov–Gusarova Reaction. Heteroatom Chemistry, 2012, 23, 568-573.	and Eleme	ntal 12
99	Facile Self-Assembly Synthesis and Characterization of Diselenophosphinato Octanuclear CulClusters Inscribed in a Twelve-Vertex Selenium Polyhedron. European Journal of Inorganic Chemistry, 2012, 2012, 4921-4929.	1.0	28
100	Synthesis and Structural Characterization of the First Europium(III) Pyridylphosphine Complex, [Eu(N,N',N―2-Py3P)(NO3)3]. Mendeleev Communications, 2012, 22, 294-296.	0.6	10
101	Efficient Synthesis of Lupininium, Anabasinium and Quininium Thioselenophosphinates <i>via</i> a Multi-component Reaction between Secondary Phosphines, Sulfur, Selenium and Alkaloids. Organic Preparations and Procedures International, 2012, 44, 262-270.	0.6	6
102	The reaction of 2â€bromopyridine with a PH ₃ /H ₂ system in the KOH/DMSO suspension: A short route to tris(2â€pyridyl)phosphine. Heteroatom Chemistry, 2012, 23, 411-414.	0.4	7
103	Unexpected redox reaction of alkali metal diselenophosphinates with elemental iodine. Mendeleev Communications, 2012, 22, 18-20.	0.6	12
104	Expedient one-pot organometallics-free synthesis of tris(2-pyridyl)phosphine from 2-bromopyridine and elemental phosphorus. Tetrahedron Letters, 2012, 53, 2424-2427.	0.7	35
105	Novel atom-economic synthesis of thioselenophosphinates via three-component reaction between secondary phosphine sulfides, elemental selenium, and amines. Journal of Sulfur Chemistry, 2011, 32, 599-610.	1.0	4
106	Reaction of Red Phosphorus with Allylbenzene in Superbasic System KOH-DMSO. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1688-1693.	0.8	9
107	Diselenophosphinates. Synthesis and Applications. Organic Preparations and Procedures International, 2011, 43, 381-449.	0.6	20
108	A three-component reaction between alkenes, secondary phosphanes, and elemental selenium: a novel, efficient, atom-economic synthesis of diselenophosphinic esters. Tetrahedron Letters, 2011, 52, 6985-6987.	0.7	13

#	Article	IF	CITATIONS
109	Reaction of primary phosphines with elemental sulfur and alkali metal hydroxides (MOH, M=Na, K, Cs): a novel and facile three-component synthesis of trithiophosphonates. Tetrahedron Letters, 2011, 52, 398-400.	0.7	8
110	An Efficient and General Synthesis of Se-Esters of Diselenophosphinic Acids via Reaction of Alkali Metal Diselenophosphinates with Organic Halides. Synthesis, 2011, 2011, 1309-1313.	1.2	3
111	Reaction of phosphine with allylbenzene in the KOH–DMSO system: regioselective synthesis of (1-phenylprop-2-yl)phosphine and bis(1-phenylprop-2-yl)phosphine. Mendeleev Communications, 2010, 20, 275-276.	0.6	4
112	Oneâ€Pot Atomâ€Economic Synthesis of Thioselenophosphinates via a New Multicomponent Reaction of Secondary Phosphanes with Elemental Sulfur, Selenium, and Amines. European Journal of Organic Chemistry, 2010, 2010, 6157-6160.	1.2	18
113	Diselenophosphinates of lupinine or anabasine via a new three-component reaction of secondary phosphines, elemental selenium, and amines. Tetrahedron Letters, 2010, 51, 1840-1843.	0.7	15
114	A novel simple synthesis of bis(diorganoselenophosphoryl)selenides (R2PSe)2Se from secondary phosphines and elemental selenium. Tetrahedron Letters, 2010, 51, 2141-2143.	0.7	20
115	Reaction of Red Phosphorus with 4-Methoxystyrene in KOH-DMSO System: One-Pot Synthesis of Tris[2-(4-methoxyphenyl)ethyl]phosphane Oxide. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 186, 98-104.	0.8	11
116	Facile Atom-Economic Synthesis of Ammonium Diselenophosphinates via Three-Component Reaction of Secondary Phosphines, Elemental Selenium, and Ammonia. Synthesis, 2010, 2010, 1777-1780.	1.2	6
117	Rapid and Convenient One-Pot Method for the Preparation of Alkali Metal Phosphinodiselenoates. Synthesis, 2010, 2010, 2463-2467.	1.2	11
118	Efficient General Synthesis of Alkylammonium Diselenophosphinates via Multicomponent One-Pot Reaction of Secondary Phosphines with Elemental Selenium and Amines. Synthesis, 2010, 2010, 3724-3730.	1.2	3
119	One-Pot Reaction of Secondary Phosphine Selenides with Selenium and Nitrogen Bases: A Novel Synthesis of Diorganodiselenophosphinates. Synthesis, 2009, 2009, 3332-3338.	1.2	19
120	Stereoselective free-radical addition of secondary phosphine selenides to aromatic acetylenes. Journal of Organometallic Chemistry, 2009, 694, 677-682.	0.8	24
121	Reaction of secondary phosphine selenides with the system Se/MOH (M=Li, Na, K, Rb, Cs): A novel three-component synthesis of diorganodiselenophosphinates. Journal of Organometallic Chemistry, 2009, 694, 4116-4120.	0.8	18