Chidambaram Narayanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3060540/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational heat transfer and two-phase flow topology in miniature tubes. Microfluidics and Nanofluidics, 2008, 4, 261-271.	2.2	111
2	Mechanisms of particle deposition in a fully developed turbulent open channel flow. Physics of Fluids, 2003, 15, 763-775.	4.0	105
3	Numerical modelling of a supercritical water oxidation reactor containing a hydrothermal flame. Journal of Supercritical Fluids, 2008, 46, 149-155.	3.2	85
4	Accurate numerical estimation of interphase momentum transfer in Lagrangian–Eulerian simulations of dispersed two-phase flows. International Journal of Multiphase Flow, 2007, 33, 1337-1364.	3.4	75
5	Adherence and bouncing of liquid droplets impacting on dry surfaces. Microfluidics and Nanofluidics, 2008, 5, 469-478.	2.2	59
6	Modelling of abrasive particle energy in water jet machining. Journal of Materials Processing Technology, 2013, 213, 2201-2210.	6.3	56
7	A numerically convergent Lagrangian–Eulerian simulation method for dispersed two-phase flows. International Journal of Multiphase Flow, 2009, 35, 376-388.	3.4	50
8	Comparison of measured and modelled droplet–hot wall interactions. Applied Thermal Engineering, 2009, 29, 1398-1405.	6.0	36
9	Hydrocarbon microtremors interpreted as nonlinear oscillations driven by oceanic background waves. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 160-173.	3.3	34
10	Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams. International Journal of Heat and Mass Transfer, 2014, 75, 337-346.	4.8	31
11	Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet. Experiments in Fluids, 2013, 54, 1.	2.4	30
12	Embedding data analytics and CFD into the digital twin concept. Computers and Fluids, 2021, 214, 104759.	2.5	27
13	Linear stability analysis of particle-laden mixing layers using Lagrangian particle tracking. Powder Technology, 2002, 125, 122-130.	4.2	26
14	Two-Phase Convective Heat Transfer in Miniature Pipes Under Normal and Microgravity Conditions. Journal of Heat Transfer, 2008, 130, .	2.1	26
15	Status and perspectives of turbulent heat transfer modelling in low-Prandtl number fluids. Nuclear Engineering and Design, 2019, 353, 110220.	1.7	23
16	Effect of near-wall turbulence enhancement on the mechanisms of particle deposition. International Journal of Multiphase Flow, 2005, 31, 940-956.	3.4	14
17	Representing complex urban geometries in mesoscale modeling. International Journal of Climatology, 2011, 31, 289-301.	3.5	14
18	A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids. Nuclear Engineering and Design, 2020, 366, 110750.	1.7	13

#	Article	IF	CITATIONS
19	Temporal instabilities of a mixing layer with uniform and nonuniform particle loadings. Physics of Fluids, 2002, 14, 3775-3789.	4.0	12
20	Numerical analysis of the continuum formulation for the initial evolution of mixing layers with particles. International Journal of Multiphase Flow, 2003, 29, 927-941.	3.4	8
21	Application of N-phase algebraic slip model and direct quadrature method of moments to the simulation of air-water flow in vertical risers and bubble column reactor. Computers and Chemical Engineering, 2016, 90, 151-160.	3.8	8
22	Non-conservative pressure-based compressible formulation for multiphase flows with heat and mass transfer. International Journal of Multiphase Flow, 2017, 96, 24-33.	3.4	8
23	Large Eddy & Interface Simulation (LEIS) of disturbance waves and heat transfer in annular flows. Nuclear Engineering and Design, 2017, 321, 190-198.	1.7	8
24	Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling. Physics of Fluids, 2006, 18, 093302.	4.0	7
25	Progress in computational microfluidics using TransAT. Microfluidics and Nanofluidics, 2013, 15, 415-429.	2.2	6
26	Mechanistic studies of single bubble growth using interface-tracking methods. Nuclear Engineering and Design, 2017, 321, 230-243.	1.7	6
27	Numerical simulation of flashing using a pressure-based compressible multiphase approach and a thermodynamic cavitation model. International Journal of Multiphase Flow, 2021, 135, 103511.	3.4	6
28	Modeling of bubble flows in vertical pipes with the N-phase compressible algebraic slip model. International Journal of Multiphase Flow, 2018, 105, 250-263.	3.4	4
29	Particle transport and flow modification in planar temporally evolving mixing layers. II. Flow modification due to two-way coupling. Physics of Fluids, 2006, 18, 093303.	4.0	3
30	Prediction of Droplet Tear-Off and Meniscus Formation in the Top-Spot Experiment Using TransAT. , 2010, , .		2
31	Statistical Modelling of Bubble Nucleation and Heat Transfer Using Interface Tracking in TransAT CMFD Code. , 2010, , .		1
32	Four-Way Coupling of Dense Particle Beds of Black Powder in Turbulent Pipe Flows. , 2010, , .		1