George A Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3060519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529, 509-514.	13.7	3,508
2	Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 1982, 107, 1198-1205.	1.0	1,499
3	The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 2018, 27, 757-785.	7.2	687
4	Cell–cell and intracellular lactate shuttles. Journal of Physiology, 2009, 587, 5591-5600.	1.3	562
5	Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Archives of Biochemistry and Biophysics, 1981, 209, 539-554.	1.4	395
6	Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis, 2017, 38, bgw127.	1.3	383
7	Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1129-1134.	3.3	379
8	Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. Journal of Applied Physiology, 2000, 89, 21-28.	1.2	360
9	Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB Journal, 2007, 21, 2602-2612.	0.2	351
10	Metabolic bases of excess post-exercise oxygen consumption. Medicine and Science in Sports and Exercise, 1984, 16, 29???43.	0.2	331
11	Anaerobic threshold. Medicine and Science in Sports and Exercise, 1985, 17, 22???31.	0.2	304
12	The lactate shuttle during exercise and recovery. Medicine and Science in Sports and Exercise, 1986, 18, 360-368.	0.2	304
13	Lactate as a fulcrum of metabolism. Redox Biology, 2020, 35, 101454.	3.9	291
14	Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E571-E579.	1.8	275
15	Intra- and extra-cellular lactate shuttles. Medicine and Science in Sports and Exercise, 2000, 32, 790-799.	0.2	272
16	Active muscle and whole body lactate kinetics after endurance training in men. Journal of Applied Physiology, 1999, 87, 1684-1696.	1.2	222
17	Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. Journal of Applied Physiology, 1999, 86, 479-487.	1.2	201
18	Mammalian fuel utilization during sustained exercise. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 89-107.	0.7	199

#	Article	IF	CITATIONS
19	Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1237-E1244.	1.8	191
20	Chronicle of the Institute of Medicine physical activity recommendation: how a physical activity recommendation came to be among dietary recommendations. American Journal of Clinical Nutrition, 2004, 79, 921S-930S.	2.2	188
21	Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. Journal of Applied Physiology, 1998, 85, 1175-1186.	1.2	178
22	Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. Journal of Physiology, 2002, 544, 963-975.	1.3	172
23	Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Archives of Biochemistry and Biophysics, 1990, 279, 377-385.	1.4	164
24	Current Concepts in Lactate Exchange. Medicine and Science in Sports and Exercise, 1991, 23, 895???906.	0.2	164
25	Evidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles. PLoS ONE, 2008, 3, e2915.	1.1	157
26	The anaerobic threshold: 50+ years of controversy. Journal of Physiology, 2021, 599, 737-767.	1.3	156
27	Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. Journal of Applied Physiology, 1999, 87, 1713-1718.	1.2	144
28	Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Archives of Biochemistry and Biophysics, 1990, 279, 386-394.	1.4	143
29	H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radical Biology and Medicine, 2010, 49, 1646-1654.	1.3	143
30	Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. Journal of Physiology, 2007, 584, 963-981.	1.3	140
31	Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiological Genomics, 2011, 43, 255-264.	1.0	139
32	Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Medicine, 2018, 48, 467-479.	3.1	130
33	Mitochondrial Lactate Oxidation Complex and an Adaptive Role for Lactate Production. Medicine and Science in Sports and Exercise, 2008, 40, 486-494.	0.2	127
34	Lactate: Brain Fuel in Human Traumatic Brain Injury: A Comparison with Normal Healthy Control Subjects. Journal of Neurotrauma, 2015, 32, 820-832.	1.7	127
35	Lactate kinetics at the lactate threshold in trained and untrained men. Journal of Applied Physiology, 2013, 114, 1593-1602.	1.2	116
36	Endurance training increases gluconeogenesis during rest and exercise in men. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E244-E251.	1.8	111

#	Article	IF	CITATIONS
37	Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. Journal of Applied Physiology, 2012, 112, 354-361.	1.2	109
38	Training-induced alterations of glucose flux in men. Journal of Applied Physiology, 1997, 82, 1360-1369.	1.2	108
39	Women at altitude: carbohydrate utilization during exercise at 4,300 m. Journal of Applied Physiology, 2000, 88, 246-256.	1.2	105
40	Endurance training increases fatty acid turnover, but not fat oxidation, in young men. Journal of Applied Physiology, 1999, 86, 2097-2105.	1.2	99
41	Effects of exercise intensity and training on lipid metabolism in young women. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E853-E863.	1.8	98
42	Effects of oral contraceptives on peak exercise capacity. Journal of Applied Physiology, 2002, 93, 1698-1702.	1.2	95
43	Lactate. Sports Medicine, 2007, 37, 341-343.	3.1	95
44	Investigation of circadian rhythms in metabolic responses to exercise. Ergonomics, 1982, 25, 1093-1107.	1.1	94
45	Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism: Clinical and Experimental, 1988, 37, 850-858.	1.5	94
46	Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?. Biochemical and Biophysical Research Communications, 2003, 304, 130-135.	1.0	92
47	Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia. Journal of Applied Physiology, 2002, 92, 1573-1584.	1.2	89
48	Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. Journal of Applied Physiology, 2004, 97, 302-309.	1.2	89
49	Overtraining affects male reproductive status. Fertility and Sterility, 1993, 60, 686-692.	0.5	85
50	Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. Journal of Applied Physiology, 2003, 94, 285-294.	1.2	85
51	Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1-R14.	0.9	85
52	Lactate in contemporary biology: a phoenix risen. Journal of Physiology, 2022, 600, 1229-1251.	1.3	85
53	Immunohistochemical analysis of MCT1, MCT2 and MCT4 expression in rat plantaris muscle. Journal of Physiology, 2005, 567, 121-129.	1.3	79
54	Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. Journal of Applied Physiology, 2013, 114, 297-306.	1.2	78

George A Brooks

#	Article	IF	CITATIONS
55	IMPORTANCE OF THE 'CROSSOVER' CONCEPT IN EXERCISE METABOLISM. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 889-895.	0.9	77
56	Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Frontiers in Neuroscience, 2014, 8, 408.	1.4	75
57	Lipid oxidation in fit young adults during postexercise recovery. Journal of Applied Physiology, 2005, 99, 349-356.	1.2	74
58	Misunderstanding the Female Athlete Triad: Refuting the IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine, 2014, 48, 1461-1465.	3.1	67
59	Selective Persistence of Circadian Rhythms in Physiological Responses to Exercise. Chronobiology International, 1990, 7, 59-67.	0.9	65
60	MCT1 confirmed in rat striated muscle mitochondria. Journal of Applied Physiology, 2004, 97, 1059-1066.	1.2	65
61	Is Lactate an Oncometabolite? Evidence Supporting a Role for Lactate in the Regulation of Transcriptional Activity of Cancer-Related Genes in MCF7 Breast Cancer Cells. Frontiers in Oncology, 2019, 9, 1536.	1.3	63
62	Exercise bioenergetics following sprint training. Archives of Biochemistry and Biophysics, 1982, 215, 260-265.	1.4	60
63	Wearable physiological systems and technologies for metabolic monitoring. Journal of Applied Physiology, 2018, 124, 548-556.	1.2	60
64	Luteal and follicular glucose fluxes during rest and exercise in 3-h postabsorptive women. Journal of Applied Physiology, 2002, 93, 42-50.	1.2	59
65	No effect of cycling experience on leg cycle ergometer efficiency. Medicine and Science in Sports and Exercise, 1996, 28, 1396-1401.	0.2	59
66	Metabolic and cardiorespiratory responses to "the lactate clamp― American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E889-E898.	1.8	58
67	Fatty acid reesterification but not oxidation is increased by oral contraceptive use in women. Journal of Applied Physiology, 2005, 98, 1720-1731.	1.2	53
68	Measurement of gluconeogenesis in exercising men by mass isotopomer distribution analysis. Journal of Applied Physiology, 2002, 93, 233-241.	1.2	50
69	Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E107-E116.	1.8	50
70	Direct and indirect lactate oxidation in trained and untrained men. Journal of Applied Physiology, 2013, 115, 829-838.	1.2	49
71	Lactate shuttle – between but not within cells?. Journal of Physiology, 2002, 541, 333-333.	1.3	48
72	Three weeks of caloric restriction alters protein metabolism in normal-weight, young men. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E446-E455.	1.8	48

#	Article	IF	CITATIONS
73	Pyruvate shuttling during rest and exercise before and after endurance training in men. Journal of Applied Physiology, 2004, 97, 317-325.	1.2	47
74	Recovery of ¹³ CO ₂ during rest and exercise after [1- ¹³ C]acetate, [2- ¹³ C]acetate, and NaH ¹³ CO ₃ infusions. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E683-E692.	1.8	46
75	Effects of training on \$\$dot V{ext{O}}_{ext{2}} \$\$ max and \$\$dot V{ext{O}}_{ext{2}} \$\$ during two running intensities in rats. Pflugers Archiv European Journal of Physiology, 1980, 386, 215-219.	1.3	44
76	Bioenergetics of Exercising Humans. , 2012, 2, 537-562.		42
77	Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis. Journal of Neurotrauma, 2015, 32, 811-819.	1.7	41
78	Iron Deficiency: Improved Exercise Performance within 15 Hours of Iron Treatment in Rats. Journal of Nutrition, 1990, 120, 909-916.	1.3	38
79	Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1192-R1201.	0.9	37
80	Glucoregulation is more precise in women than in men during postexercise recovery. American Journal of Clinical Nutrition, 2008, 87, 1686-1694.	2.2	36
81	Hematological and acid-base changes in men during prolonged exercise with and without sodium-lactate infusion. Journal of Applied Physiology, 2005, 98, 856-865.	1.2	35
82	What does glycolysis make and why is it important?. Journal of Applied Physiology, 2010, 108, 1450-1451.	1.2	34
83	Host metabolism regulates growth and differentiation of Toxoplasma gondii. International Journal for Parasitology, 2012, 42, 947-959.	1.3	33
84	The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. Journal of Sport and Health Science, 2020, 9, 446-460.	3.3	32
85	Catecholamine response is attenuated during moderate-intensity exercise in response to the "lactate clamp― American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E143-E147.	1.8	30
86	Autoregulation of glucose production in men with a glycerol load during rest and exercise. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E657-E668.	1.8	29
87	Training decreases muscle glycogen turnover during exercise. European Journal of Applied Physiology, 1998, 78, 479-486.	1.2	28
88	The Precious Few Grams of Glucose During Exercise. International Journal of Molecular Sciences, 2020, 21, 5733.	1.8	28
89	Pulse injection,13C tracer studies of lactate metabolism in humans during rest and two levels of exercise. Biomedical Mass Spectrometry, 1982, 9, 310-314.	1.8	26
90	Endurance training has little effect on active muscle free fatty acid, lipoprotein cholesterol, or triglyceride net balances. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E656-E665.	1.8	23

#	Article	IF	CITATIONS
91	Effects of endurance training on cardiorespiratory fitness and substrate partitioning in postmenopausal women. Metabolism: Clinical and Experimental, 2009, 58, 1338-1346.	1.5	23
92	Plasma triglyceride concentrations are rapidly reduced following individual bouts of endurance exercise in women. European Journal of Applied Physiology, 2010, 109, 721-730.	1.2	23
93	Exercise tames the wild side of the Myc network: a hypothesis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E18-E30.	1.8	23
94	Energy Flux, Lactate Shuttling, Mitochondrial Dynamics, and Hypoxia. Advances in Experimental Medicine and Biology, 2016, 903, 439-455.	0.8	23
95	Transpulmonary pyruvate kinetics. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R769-R774.	0.9	22
96	Transpulmonary lactate shuttle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R143-R149.	0.9	21
97	Role of the Heart in Lactate Shuttling. Frontiers in Nutrition, 2021, 8, 663560.	1.6	21
98	Critical Importance of Controlling Energy Status to Understand the Effects of "Exercise" on Metabolism. Exercise and Sport Sciences Reviews, 2008, 36, 2-4.	1.6	20
99	Letter to the Editor. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E366-E366.	1.8	19
100	Twelve weeks of endurance training increases FFA mobilization and reesterification in postmenopausal women. Journal of Applied Physiology, 2010, 109, 1573-1581.	1.2	19
101	Retention of intravenously infused [13C]bicarbonate is transiently increased during recovery from hard exercise. Journal of Applied Physiology, 2007, 103, 1604-1612.	1.2	18
102	Investigation of the lactate shuttle in skeletal muscle mitochondria. Journal of Physiology, 2007, 584, 705-706.	1.3	18
103	The Metabolic Systems: Anaerobic Metabolism (Glycolytic and Phosphagen). , 2003, , 322-360.		18
104	Chronic Lactate Exposure Decreases Mitochondrial Function by Inhibition of Fatty Acid Uptake and Cardiolipin Alterations in Neonatal Rat Cardiomyocytes. Frontiers in Nutrition, 2022, 9, 809485.	1.6	17
105	Ventilation studied with circulatory occlusion during two intensities of exercise. European Journal of Applied Physiology and Occupational Physiology, 1985, 54, 269-277.	1.2	13
106	Reply. Metabolism: Clinical and Experimental, 1993, 42, 1497-1500.	1.5	12
107	Training improves the response in glucose flux to exercise in postmenopausal women. Journal of Applied Physiology, 2009, 107, 90-97.	1.2	12
108	Ion-retardation desalting of blood and other animal tissues for separation of soluble metabolites by two-dimensional chromatography. Analytical Biochemistry, 1977, 83, 580-588.	1.1	11

#	Article	IF	CITATIONS
109	Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles. Physiological Reports, 2013, 1, e00027.	0.7	11
110	Are Arterial, Muscle and Working Limb Lactate Exchange Data Obtained on Men at Altitude Consistent with the Hypothesis of an Intracellular Lactate Shuttle?. Advances in Experimental Medicine and Biology, 1999, 474, 185-204.	0.8	8
111	The blood lactate/pyruvate equilibrium affair. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E34-E43.	1.8	8
112	Ventilatory control studied with circulatory occlusion during exercise recovery. European Journal of Applied Physiology and Occupational Physiology, 1987, 56, 299-305.	1.2	7
113	Roles of estrogen receptor-alpha in mediating life span: the hypothalamic deregulation hypothesis. Physiological Genomics, 2017, 49, 88-95.	1.0	7
114	Hyperlactatemia in diabetic ketoacidosis. Diabetic Medicine, 2022, 39, e14723.	1.2	7
115	Substantial working muscle glycerol turnover during two-legged cycle ergometry. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E950-E957.	1.8	5
116	From Euclid to Molecular Biology and Gene Expression. Exercise and Sport Sciences Reviews, 2007, 35, 83-85.	1.6	5
117	Body-Mind Learning. Exercise and Sport Sciences Reviews, 2007, 35, 163-165.	1.6	5
118	The "Anaerobic Threshold―Concept Is Not Valid in Physiology and Medicine. Medicine and Science in Sports and Exercise, 2021, 53, 1093-1096.	0.2	5
119	Maintenance of Euglycemia Is Impaired in Gluconeogenesis-Inhibited Iron-Deficient Rats at Rest and during Exercise. Journal of Nutrition, 1994, 124, 2131-2138.	1.3	4
120	<i>Master regulator or readout: the wisdom of distributed control</i> . Focus on "Pyruvate suppresses PGC1α expression and substrate utilization despite increased respiratory chain content in C2C12 myotubes― American Journal of Physiology - Cell Physiology, 2010, 299, C216-C217.	2.1	4
121	Comment on Point:Counterpoint: The lactate paradox does/does not occur during exercise at high altitude― Journal of Applied Physiology, 2007, 102, 2408-2408.	1.2	3
122	Energy Substrate Partitioning and Efficiency in Individuals With Atherogenic Lipoprotein Phenotype. Obesity, 2011, 19, 1360-1365.	1.5	3
123	The Exercise Physiology Paradigm in Contemporary Biology: To Molbiol or Not to Molbiol—That is the Question. Quest, 1987, 39, 231-242.	0.8	2
124	Governor recalled! Now what?. Journal of Physiology, 2005, 568, 355-355.	1.3	2
125	Effects of training on blood glucose kinetics during glucose challenge in rats. Pflugers Archiv European Journal of Physiology, 1988, 412, 397-401.	1.3	1
126	Recycling of Deuterium from Dideuterated Glucose during Moderate Exercise. Annals of Clinical Biochemistry, 2000, 37, 540-542.	0.8	1

#	Article	IF	CITATIONS
127	Reflections on the Institute of Medicine Report. Exercise and Sport Sciences Reviews, 2006, 34, 47-49.	1.6	1
128	Genome, Proteome, and Transcriptomes. Exercise and Sport Sciences Reviews, 2007, 35, 41-42.	1.6	1
129	Roles of lactate in lactate oxidation complex, mitochondrial biogenesis and cell signaling in cultured L6 skeletal muscle cells. Japanese Journal of Physical Fitness and Sports Medicine, 2008, 57, 83-83.	0.0	1
130	Tracer Measured glucose uptake by the leg demonstrates dynamic kinetics across the working muscle. FASEB Journal, 2006, 20, A169.	0.2	1
131	Authors' Reply to Monferrer-MarÃn J, et al.: Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Medicine, 2022, 52, 2011-2012.	3.1	1
132	Effect of Diet and Metabolic Rate on Open Circuit Calculations of [Vdot]O2and [Vdot]CO2. Research Quarterly American Alliance for Health Physical Education and Recreation, 1976, 47, 731-740.	0.3	0
133	ACSM Steps Up and Takes a Place at the Science Table. Exercise and Sport Sciences Reviews, 2006, 34, 89-91.	1.6	0
134	Thanks Mike ???and First Shot on Obesity Management, Incentives, and Social Responsibility. Exercise and Sport Sciences Reviews, 2006, 34, 2-3.	1.6	0
135	ACSM Fellow Ken Baldwin and Colleagues Discover a New Antisense Retrograde Mechanism of Gene Regulation. Exercise and Sport Sciences Reviews, 2006, 34, 143-144.	1.6	0
136	So Many Meetings and Things to Learn and So Little Time. Exercise and Sport Sciences Reviews, 2007, 35, 2-4.	1.6	0
137	Reply from David Poole, Harry Rossiter, George Brooks and L. Bruce Gladden. Journal of Physiology, 2021, 599, 1715-1716.	1.3	0
138	Reply from George A. Brooks, Harry B. Rossiter, David C. Poole and L. Bruce Gladden. Journal of Physiology, 2021, 599, 1711-1712.	1.3	0
139	Palmitate oxidation during rest, exercise, and postâ€exercise recovery. FASEB Journal, 2006, 20, A1450.	0.2	0
140	Evidence of a mitochondrial lactate oxidation complex at mitochondrial inner membrane in mammalian skeletal muscle cells. FASEB Journal, 2006, 20, A816.	0.2	0
141	Glucose Kinetics in HIV Infected Patients on Antiretroviral Therapy During Rest and Exercise. FASEB Journal, 2007, 21, A928.	0.2	0
142	Energy efficiency and substrate partitioning in individuals with atherogenic lipoprotein profile. FASEB Journal, 2008, 22, 1176.2.	0.2	0
143	Effects of endurance training on energy substrate partitioning during exercise in postmenopausal women. FASEB Journal, 2008, 22, 753.15.	0.2	0
144	Reduced aerobic capacity in HIV infected patients is associated with decreased capacity for lactate oxidation during exercise. FASEB Journal, 2008, 22, 111-111.	0.2	0

#	Article	IF	CITATIONS
145	CREAL: A language for describing biological systems from a macro to a molecular scale. FASEB Journal, 2012, 26, .	0.2	0
146	Cluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. FASEB Journal, 2013, 27, 1132.2.	0.2	0
147	An interactive quantitative temporal physiological model of glucose passage and absorption through the gastrointestinal tract and subsequent modulation of insulin and glucagon secretion in humans. FASEB Journal, 2013, 27, 1213.2.	0.2	0
148	Mitochondria from Skeletal Muscle Cells Derived from Old Donors Show Reduced Energy Production and Respiratory Capacity. FASEB Journal, 2022, 36, .	0.2	0
149	Reply from George A. Brooks. Journal of Physiology, 2022, 600, 2815-2815.	1.3	0
150	Dysregulated Mitochondrial Respiration Occurs With Aging. FASEB Journal, 2022, 36, .	0.2	0
151	Trimetazidine Blocks Lipid Oxidation—Should it be Repurposed for Prevention and Treatment of Diabetic Ketoacidosis?. Journal of Diabetes Science and Technology, 0, , 193229682211001.	1.3	0