Bruno Fedrizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3060060/publications.pdf

Version: 2024-02-01

89 papers 2,007 citations

218381 26 h-index 276539 41 g-index

90 all docs 90 docs citations

90 times ranked 1939 citing authors

#	Article	IF	CITATIONS
1	The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocolloids, 2022, 123, 107150.	5.6	25
2	First use of grape waste-derived building blocks to yield antimicrobial materials. Food Chemistry, 2022, 370, 131025.	4.2	2
3	Ultrasound assisted extraction and quantification of targeted bioactive compounds of Centella asiatica (Gotu Kola) by UHPLC-MS/MS MRM tandem mass spectroscopy. Food Chemistry, 2022, 371, 131187.	4.2	12
4	Metabolite characterization of fifteen by-products of the coffee production chain: From farm to factory. Food Chemistry, 2022, 369, 130753.	4.2	23
5	Time course accumulation of polysulfides in Chardonnay and model juice fermentations. Food Chemistry, 2022, 371, 131341.	4.2	5
6	Synthesis of d6-deuterated analogues of aroma molecules-β-damascenone, β-damascone and safranal. Results in Chemistry, 2022, 4, 100264.	0.9	2
7	Polysulfides accumulation in white wines produced from different oenological yeasts. Journal of Food Composition and Analysis, 2022, 111, 104632.	1.9	4
8	Simultaneous extraction, derivatisation and analysis of varietal thiols and their non-volatile precursors from beer. LWT - Food Science and Technology, 2022, , 113563.	2.5	3
9	Unraveling the Mystery of 3-Sulfanylhexan-1-ol: The Evolution of Methodology for the Analysis of Precursors to 3-Sulfanylhexan-1-ol in Wine. Foods, 2022, 11, 2050.	1.9	3
10	Attempts to Create Products with Increased Health-Promoting Potential Starting with Pinot Noir Pomace: Investigations on the Process and Its Methods. Foods, 2022, 11, 1999.	1.9	2
11	Development of volatile organic compounds and their glycosylated precursors in tamarillo (Solanum) Tj ETQq1 1 128046.	. 0.784314 4.2	4 rgBT /Overlo 25
12	Interâ€regional survey of the New Zealand Pinot noir fermentative sulfur compounds profile. Journal of the Science of Food and Agriculture, 2021, 101, 947-951.	1.7	0
13	Free and Glycosidic Volatiles in Tamarillo (<i>Solanum betaceum</i> Cav. syn. <i>Cyphomandra) Tj ETQq1 1 0.78 Agricultural and Food Chemistry, 2021, 69, 4518-4532.</i>	84314 rgB1 2.4	BT /Overlock 1) 5
14	The polysaccharides of winemaking: From grape to wine. Trends in Food Science and Technology, 2021, 111, 731-740.	7.8	23
15	Aroma and Sensory Profiles of Sauvignon Blanc Wines from Commercially Produced Free Run and Pressed Juices. Beverages, 2021, 7, 29.	1.3	3
16	Effect of holding temperature on the thiol potential of machineâ€harvested Sauvignon Blanc grapes. Australian Journal of Grape and Wine Research, 2021, 27, 453-457.	1.0	1
17	Elucidation of Endogenous Aroma Compounds in Tamarillo (<i>Solanum betaceum</i>) Using a Molecular Sensory Approach. Journal of Agricultural and Food Chemistry, 2021, 69, 9362-9375.	2.4	7
18	Contribution of Grape Skins and Yeast Choice on the Aroma Profiles of Wines Produced from Pinot Noir and Synthetic Grape Musts. Fermentation, 2021, 7, 168.	1.4	1

#	Article	IF	CITATIONS
19	A single run liquid chromatography-tandem mass spectrometry method for the analysis of varietal thiols and their precursors in wine. Journal of Chromatography A, 2021, 1658, 462603.	1.8	12
20	Effect of antioxidant supplementation on the polysulfides of white wines. LWT - Food Science and Technology, 2020, 134, 110132.	2.5	5
21	Scalable synthesis of the aroma compounds $d6-\hat{l}^2$ -ionone and $d6-\hat{l}^2$ -cyclocitral for use as internal standards in stable isotope dilution assays. Tetrahedron Letters, 2020, 61, 152642.	0.7	3
22	Synthesis and Use of Ethyl 6-Acetyloxyhexanoate as an Internal Standard: An Interdisciplinary Experiment for an Undergraduate Chemistry Laboratory. Journal of Chemical Education, 2020, 97, 3847-3851.	1.1	2
23	Fermentation of Sauvignon blanc grape marc extract yields important wine aroma 3-sulfanylhexan-1-ol (3SH). LWT - Food Science and Technology, 2020, 131, 109653.	2.5	5
24	Characterization of free and glycosidically bound volatile compounds from tamarillo (Solanum) Tj ETQq0 0 0 rgBT and Technology, 2020, 124, 109178.	/Overlock 2.5	10 Tf 50 54 10
25	Addition of volatile sulfur compounds to yeast at the early stages of fermentation reveals distinct biological and chemical pathways for aroma formation. Food Microbiology, 2020, 89, 103435.	2.1	15
26	A convenient synthesis of amino acid-derived precursors to the important wine aroma 3-sulfanylhexan-1-ol (3SH). Tetrahedron Letters, 2020, 61, 151663.	0.7	6
27	A novel LC-HRMS method reveals cysteinyl and glutathionyl polysulfides in wine. Talanta, 2020, 218, 121105.	2.9	10
28	The impact of postharvest ultra-violet light irradiation on the thiol content of Sauvignon blanc grapes. Food Chemistry, 2019, 271, 747-752.	4.2	7
29	A new analytical method to measure <i>S</i> â€methylâ€ <scp>l</scp> â€methionine in grape juice reveals the influence of yeast on dimethyl sulfide production during fermentation. Journal of the Science of Food and Agriculture, 2019, 99, 6944-6953.	1.7	10
30	Characterization of an Antioxidant and Antimicrobial Extract from Cool Climate, White Grape Marc. Antioxidants, 2019, 8, 232.	2.2	31
31	Iterative synthetic strategies and gene deletant experiments enable the first identification of polysulfides in <i>Saccharomyces cerevisiae</i> Chemical Communications, 2019, 55, 8868-8871.	2.2	8
32	Stereoselective Synthesis of the Spirocyclic Ring System of the Sesquiterpene Spirolepechinene. Asian Journal of Organic Chemistry, 2019, 8, 462-465.	1.3	1
33	A Horticultural Medium Established from the Rapid Removal of Phytotoxins from Winery Grape Marc. Horticulturae, 2019, 5, 69.	1.2	4
34	The role of yeast <i> ARO8, ARO9 </i> and <i> ARO10 </i> genes in the biosynthesis of 3-(methylthio)-1-propanol from <i> L</i> -methionine during fermentation in synthetic grape medium. FEMS Yeast Research, 2019, 19, .	1.1	29
35	Identification of Floral Volatiles and Pollinator Responses in Kiwifruit Cultivars, Actinidia chinensis var. chinensis. Journal of Chemical Ecology, 2018, 44, 406-415.	0.9	14
36	Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage. Food Chemistry, 2018, 261, 149-156.	4.2	25

#	Article	IF	CITATIONS
37	Facile gas chromatography–tandem mass spectrometry stable isotope dilution method for the quantification of sesquiterpenes in grape. Journal of Chromatography A, 2018, 1537, 91-98.	1.8	10
38	Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 1442-1455.	1.2	12
39	Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy ageing. Trends in Food Science and Technology, 2018, 79, 88-97.	7.8	51
40	Co-evolution as Tool for Diversifying Flavor and Aroma Profiles of Wines. Frontiers in Microbiology, 2018, 9, 910.	1.5	14
41	Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine. Food Research International, 2017, 98, 79-86.	2.9	31
42	Saccharomyces cerevisiae FLO1 Gene Demonstrates Genetic Linkage to Increased Fermentation Rate at Low Temperatures. G3: Genes, Genomes, Genetics, 2017, 7, 1039-1048.	0.8	7
43	Efficient Total Synthesis of (±)-Isoguaiacin and (±)-Isogalbulin. Synlett, 2017, 28, 1449-1452.	1.0	7
44	Sauvignon Blanc aroma and sensory profile modulation from high fining rates. Australian Journal of Grape and Wine Research, 2017, 23, 359-367.	1.0	4
45	Identification of in situ flower volatiles from kiwifruit (Actinidia chinensis var. deliciosa) cultivars and their male pollenisers in a New Zealand orchard. Phytochemistry, 2017, 141, 61-69.	1.4	10
46	Industrial scale fining influences the aroma and sensory profile of Sauvignon blanc. LWT - Food Science and Technology, 2017, 80, 423-429.	2.5	8
47	TheGLO1Gene Is Required for Full Activity ofO-Acetyl Homoserine Sulfhydrylase Encoded byMET17. ACS Chemical Biology, 2017, 12, 414-421.	1.6	7
48	Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines. Journal of Agricultural and Food Chemistry, 2017, 65, 8902-8912.	2.4	41
49	Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Research, 2017, 17, .	1.1	46
50	Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chemistry, 2017, 219, 373-381.	4.2	46
51	The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains. FEMS Yeast Research, 2016, 16, fow050.	1.1	27
52	The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation. FEMS Yeast Research, 2016, 16, fow100.	1.1	14
53	Novel technological strategies to enhance tropical thiol precursors in winemaking by-products. Food Chemistry, 2016, 207, 16-19.	4.2	11
54	Pre-fermentation fining effects on the aroma chemistry of Marlborough Sauvignon blanc press fractions. Food Chemistry, 2016, 208, 326-335.	4.2	18

#	Article	IF	CITATIONS
55	Grape cluster microclimate influences the aroma composition of Sauvignon blanc wine. Food Chemistry, 2016, 210, 640-647.	4.2	29
56	Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Food Chemistry, 2016, 209, 341-347.	4.2	40
57	Convenient synthesis of deuterium labelled sesquiterpenes. Tetrahedron Letters, 2016, 57, 4496-4499.	0.7	12
58	Optimization of Ecofriendly Extraction of Bioactive Monomeric Phenolics and Useful Flavor Precursors from Grape Waste. ACS Sustainable Chemistry and Engineering, 2016, 4, 5060-5067.	3.2	17
59	Enhancement of Chardonnay antioxidant activity and sensory perception through maceration technique. LWT - Food Science and Technology, 2016, 65, 152-157.	2.5	26
60	Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Scientific Reports, 2015, 5, 14233.	1.6	219
61	Under-Vine Management To Modulate Wine Chemical Profile. ACS Symposium Series, 2015, , 161-189.	0.5	0
62	Antioxidant activity and phenolic profiles of Sauvignon Blanc wines made by various maceration techniques. Australian Journal of Grape and Wine Research, 2015, 21, 57-68.	1.0	26
63	Synthesis of alkyl sulfonic acid aldehydes and alcohols, putative precursors to important wine aroma thiols. Tetrahedron Letters, 2015, 56, 1728-1731.	0.7	14
64	Influence of harvesting technique and maceration process on aroma and phenolic attributes of Sauvignon blanc wine. Food Chemistry, 2015, 183, 181-189.	4.2	42
65	Evolution of Volatile Sulfur Compounds during Wine Fermentation. Journal of Agricultural and Food Chemistry, 2015, 63, 8017-8024.	2.4	37
66	Pre-fermentation addition of grape tannin increases the varietal thiols content in wine. Food Chemistry, 2015, 166, 56-61.	4.2	20
67	Aroma Impact of Ascorbic Acid and Glutathione Additions to Sauvignon blanc at Harvest to Supplement Sulfur Dioxide. American Journal of Enology and Viticulture, 2014, 65, 388-393.	0.9	21
68	Stable Isotope Ratios and Aroma Profile Changes Induced Due to Innovative Wine Dealcoholisation Approaches. Food and Bioprocess Technology, 2014, 7, 62-70.	2.6	25
69	Induction of grape botrytization during withering affects volatile composition of Recioto di Soave, a "passito―style wine. European Food Research and Technology, 2013, 236, 853-862.	1.6	18
70	Ethyl propiolate derivatisation for the analysis of varietal thiols in wine. Journal of Chromatography A, 2013, 1312, 104-110.	1.8	49
71	Influence of oxygen availability during skin-contact maceration on the formation of precursors of 3-mercaptohexan-1-ol in M $\tilde{A}^{1/4}$ ller-Thurgau and Sauvignon Blanc grapes. Australian Journal of Grape and Wine Research, 2013, 19, n/a-n/a.	1.0	11
72	First evidence of the presence of S-cysteinylated and S-glutathionylated precursors in tannins. Food Chemistry, 2013, 141, 1196-1202.	4.2	16

#	Article	IF	Citations
73	D-optimal design of an untargeted HS-SPME-GC-TOF metabolite profiling method. Analyst, The, 2012, 137, 3725.	1.7	12
74	Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines. Analytica Chimica Acta, 2012, 732, 194-202.	2.6	44
75	Evaluation of the Impact of an Archaic Protocol on White Wine Free Aroma Compounds. ACS Symposium Series, 2012, , 117-131.	0.5	3
76	Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. European Food Research and Technology, 2012, 235, 303-313.	1.6	114
77	Effects of noble rot on must composition and aroma profile of Amarone wine produced by the traditional grape withering protocol. Food Chemistry, 2012, 130, 370-375.	4.2	59
78	Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa). Phytochemistry, 2012, 77, 287-293.	1.4	25
79	Model Aging and Oxidation Effects on Varietal, Fermentative, and Sulfur Compounds in a Dry Botrytized Red Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 1804-1813.	2.4	33
80	Sulfur Compounds in Still and Sparkling Wines and in Grappa: Analytical and Technological Aspects. ACS Symposium Series, 2011, , 215-228.	0.5	4
81	Variation of Some Fermentative Sulfur Compounds in Italian "Millesimè―Classic Sparkling Wines during Aging and Storage on Lees. Journal of Agricultural and Food Chemistry, 2010, 58, 9716-9722.	2.4	31
82	Effectiveness of isotopically labelled and nonâ€isotopically labelled internal standards in the gas chromatography/mass spectrometry analysis of sulfur compounds in wines: use of a statistically based matrix comprehensive approach. Rapid Communications in Mass Spectrometry, 2009, 23, 1167-1172.	0.7	11
83	First Identification of 4- <i>S</i> -Glutathionyl-4-methylpentan-2-one, a Potential Precursor of 4-Mercapto-4-methylpentan-2-one, in Sauvignon Blanc Juice. Journal of Agricultural and Food Chemistry, 2009, 57, 991-995.	2.4	95
84	Effect of Nitrogen Supplementation and Saccharomyces Species on Hydrogen Sulfide and Other Volatile Sulfur Compounds in Shiraz Fermentation and Wine. Journal of Agricultural and Food Chemistry, 2009, 57, 4948-4955.	2.4	90
85	Hyphenated gas chromatography–mass spectrometry analysis of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in wine. Analytica Chimica Acta, 2008, 621, 38-43.	2.6	25
86	Aging Effects and Grape Variety Dependence on the Content of Sulfur Volatiles in Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 10880-10887.	2.4	54
87	Gas chromatography–mass spectrometry determination of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in wine. Analytica Chimica Acta, 2007, 596, 291-297.	2.6	40
88	Concurrent quantification of light and heavy sulphur volatiles in wine by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 707-714.	0.7	34
89	Analysis of Aroma Compounds in Wine. , 0, , 173-225.		4