
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3059459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Synthesis of Highâ€Entropy Oxide Microparticles. Small, 2022, 18, e2104761.	5.2	41
2	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	4.7	49
3	A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Materials Horizons, 2022, 9, 1232-1242.	6.4	36
4	First-principles calculations of the BeO monolayer with chemical functionalization. Physical Chemistry Chemical Physics, 2022, 24, 7797-7804.	1.3	2
5	Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. Nano Letters, 2022, 22, 255-262.	4.5	12
6	Highâ€Entropy Metal Sulfide Nanoparticles Promise Highâ€Performance Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2002887.	10.2	226
7	In Situ Lignin Modification toward Photonic Wood. Advanced Materials, 2021, 33, e2001588.	11.1	86
8	Strong, Hydrostable, and Degradable Straws Based on Cellulose‣ignin Reinforced Composites. Small, 2021, 17, e2008011.	5.2	81
9	Scalable Carbon Black Enhanced Nanofiber Network Films for Highâ€Efficiency Solar Steam Generation. Advanced Materials Interfaces, 2021, 8, 2101160.	1.9	14
10	Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853.	11.1	93
11	Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability. Scientific Reports, 2020, 10, 11023.	1.6	32
12	Overview of transition metal-based composite materials for supercapacitor electrodes. Nanoscale Advances, 2020, 2, 5516-5528.	2.2	96
13	High-Temperature Pulse Method for Nanoparticle Redispersion. Journal of the American Chemical Society, 2020, 142, 17364-17371.	6.6	28
14	Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119.	10.2	39
15	Highly Efficient Water Treatment via a Wood-Based and Reusable Filter. , 2020, 2, 430-437.		50
16	Overcoming immiscibility toward bimetallic catalyst library. Science Advances, 2020, 6, eaaz6844.	4.7	105
17	Two-Stage Tunneling-Dominated Electrodeposition for Large-Scale Production of Ultralong Wavy Metal Microstructures on Native Oxide Layer-Passivated Si Electrode with Specific Surface Configuration. Journal of Physical Chemistry C, 2019, 123, 16326-16331.	1.5	0
18	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	5.2	28

#	Article	IF	CITATIONS
19	Achieving Rich Mixed-Valence Polysulfide/Carbon Nanotube Films toward Ultrahigh Volume Energy Density and Largely Deformable Pseudocapacitors. ACS Applied Materials & Interfaces, 2019, 11, 25271-25282.	4.0	7
20	Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe,) Tj ETQqO 0 0 rg supercapacitors. Nano Energy, 2018, 45, 439-447.	gBT /Overl 8.2	ock 10 Tf 5 112
21	A Self-Folding Dynamic Covalent Shape Memory Epoxy and Its Continuous Glass Fiber Composite. Industrial & Engineering Chemistry Research, 2018, 57, 5276-5281.	1.8	26
22	Richâ€Mixedâ€Valence Ni <i>_x</i> Co <i>_{3â^'x}</i> P <i>_y</i> Porous Nanowires Interwelded Junctionâ€Free 3D Network Architectures for Ultrahigh Areal Energy Density Supercapacitors. Advanced Functional Materials, 2018, 28, 1804620.	7.8	122
23	Monolayer standing MnO2-Nanosheet covered Mn3O4 octahedrons anchored in 3D N-Doped graphene networks as supercapacitor electrodes with remarkable cycling stability. Journal of Power Sources, 2018, 396, 483-490.	4.0	38
24	Flexible Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates. ChemSusChem, 2017, 10, 2301-2308.	3.6	37
25	Phase Diagram of Continuous Binary Nanoalloys: Size, Shape, and Segregation Effects. Scientific Reports, 2017, 7, 41990.	1.6	44
26	Reply to Comment on "Flexible Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates― ChemSusChem, 2017, 10, 2312-2315.	3.6	0
27	General Controlled Sulfidation toward Achieving Novel Nanosheetâ€Built Porous Squareâ€FeCo ₂ S ₄ â€Tube Arrays for Highâ€Performance Asymmetric Allâ€Solidâ€State Pseudocapacitors. Advanced Energy Materials, 2017, 7, 1601985.	10.2	226
28	Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites. International Journal of Materials Research, 2017, 108, 213-221.	0.1	3
29	Supercapacitors: General Controlled Sulfidation toward Achieving Novel Nanosheetâ€Built Porous Squareâ€FeCo ₂ S ₄ â€Tube Arrays for Highâ€Performance Asymmetric Allâ€Solidâ€State Pseudocapacitors (Adv. Energy Mater. 6/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
30	Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application. Scientific Reports, 2017, 7, 4403.	1.6	72
31	Wearable Highâ€Performance Supercapacitors Based on Silverâ€Sputtered Textiles with FeCo ₂ S ₄ –NiCo ₂ S ₄ Composite Nanotubeâ€Built Multitripod Architectures as Advanced Flexible Electrodes. Advanced Energy Materials, 2017, 7, 1601234.	10.2	293
32	Hierarchical Multicomponent Electrode with Interlaced Ni(OH) ₂ Nanoflakes Wrapped Zinc Cobalt Sulfide Nanotube Arrays for Sustainable Highâ€Performance Supercapacitors. Advanced Energy Materials, 2017, 7, 1701228.	10.2	162
33	Comment on "Electrum, the Gold–Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rulesâ€: ACS Nano, 2016, 10, 10618-10619.	7.3	5
34	Asymmetric hybrid capacitors based on novel bearded carbon fiber cloth–pinhole polyaniline electrodes with excellent energy density. RSC Advances, 2016, 6, 82995-83002.	1.7	27
35	Scalable Synthesis of Ag Networks with Optimized Sub-monolayer Au-Pd Nanoparticle Covering for Highly Enhanced SERS Detection and Catalysis. Scientific Reports, 2016, 6, 37092.	1.6	19
36	High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. Scientific Reports, 2016, 6, 12883.	1.6	81

#	Article	lF	CITATIONS
37	Cauliflower-like Ni/NiO and NiO architectures transformed from nickel alkoxide and their excellent removal of Congo red and Cr(<scp>vi</scp>) ions from water. RSC Advances, 2016, 6, 103585-103593.	1.7	18
38	Hierarchically MnO ₂ –Nanosheet Covered Submicrometer-FeCo ₂ O ₄ -Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4762-4770.	4.0	104
39	Correlation between band gap, dielectric constant, Young's modulus and melting temperature of GaN nanocrystals and their size and shape dependences. Scientific Reports, 2015, 5, 16939.	1.6	51
40	Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth. Scientific Reports, 2015, 5, 11263.	1.6	16
41	A high energy density asymmetric all-solid-state supercapacitor based on cobalt carbonate hydroxide nanowire covered N-doped graphene and porous graphene electrodes. Journal of Materials Chemistry A, 2015, 3, 18505-18513.	5.2	68
42	The Missing Memristor has Not been Found. Scientific Reports, 2015, 5, 11657.	1.6	84
43	Highly processible and electrochemically active graphene-doped polyacrylic acid/polyaniline allowing the preparation of defect-free thin films for solid-state supercapacitors. RSC Advances, 2015, 5, 62670-62677.	1.7	9
44	Large-scale fabrication of porous bulk silver thin sheets with tunable porosity for high-performance binder-free supercapacitor electrodes. RSC Advances, 2015, 5, 45194-45200.	1.7	18
45	The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. Journal of Materials Science, 2014, 49, 2802-2809.	1.7	21
46	3D nitrogen-doped graphene/Co(OH)2-nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Advances, 2014, 4, 61753-61758.	1.7	26
47	Bubble-assisted growth of hollow palladium nanospheres with structure control allowing very thin shells for highly enhanced catalysis. RSC Advances, 2014, 4, 13729-13732.	1.7	8
48	Hierarchically Porous MnO ₂ Microspheres Doped with Homogeneously Distributed Fe ₃ O ₄ Nanoparticles for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 17637-17646.	4.0	89
49	Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and SERS detection. Journal of Materials Chemistry A, 2014, 2, 3648-3660.	5.2	70
50	Different mechanical response of TiNi film induced by the shape of indenter during nanoindentation. Sensors and Actuators A: Physical, 2014, 217, 75-80.	2.0	16
51	MnO2–Au Composite Electrodes for Supercapacitors. Chemistry Letters, 2014, 43, 122-124.	0.7	13
52	Synthesis of Epoxy Resin Based on Biphenyl Structure for Application in Carbon Fiber-Reinforced Composites. Polymer-Plastics Technology and Engineering, 2013, 52, 581-585.	1.9	13
53	Core-shell magnetic exchange model for Co3O4 nanowires. Applied Physics Letters, 2013, 102, 203102.	1.5	5
54	Diameter-controlled synthesis of polycrystalline nickel nanowires and their size dependent magnetic properties. CrystEngComm, 2012, 14, 7209.	1.3	18

#	Article	IF	CITATIONS
55	Effects of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles. Science China Technological Sciences, 2012, 55, 894-902.	2.0	37
56	Facile and rapid synthesis of nickel nanowires and their magnetic properties. Journal of Nanoparticle Research, 2011, 13, 7085-7094.	0.8	24
57	Characterization of the Microstructure of Threeâ€Dimensionalâ€Needled Carbon/Silicon Carbide Composites. International Journal of Applied Ceramic Technology, 2010, 7, 821-829.	1.1	2
58	Controllable incorporation of Ag and Ag–Au nanoparticles in carbon spheres for tunable optical and catalytic properties. Journal of Materials Chemistry, 2010, 20, 5436.	6.7	169
59	Controllable synthesis of metal particles by a direct current electrochemical approach. Science in China Series D: Earth Sciences, 2009, 52, 2709-2714.	0.9	2
60	In-situ polymerized nanosilica/acrylic/epoxy hybrid coating: Preparation, microstructure and properties. Science in China Series D: Earth Sciences, 2009, 52, 2204-2209.	0.9	4
61	An estimation method on failure stress of micro thickness Cu film-substrate structure. Science in China Series D: Earth Sciences, 2009, 52, 2210-2215.	0.9	8
62	Synthesis of nanorods and nanowires using biomolecules under conventional- and microwave-hydrothermal conditions. Journal of Materials Science, 2008, 43, 2377-2386.	1.7	34
63	Studies of two distinct types of (Ba,Sr)TiO3â•Pt interfaces. Applied Physics Letters, 2008, 92, 102906.	1.5	11
64	Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy. Applied Physics Letters, 2007, 91, .	1.5	38
65	SEM <i>In Situ</i> Study on Deformation Behavior of Cu and Cu/Ni Films under Three-Point Bending. Materials Transactions, 2007, 48, 2795-2798.	0.4	13
66	Effects of the substitution of Pb for Ba in (Ba,Sr)TiO3 films on the temperature stability of the tunable properties. Applied Physics Letters, 2006, 88, 182909.	1.5	24