Anders B Laursen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3059379/publications.pdf

Version: 2024-02-01

27 papers

4,725 citations

304368

22

h-index

27 g-index

29 all docs 29 docs citations

times ranked

29

8152 citing authors

#	Article	IF	CITATIONS
1	Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy and Environmental Science, 2012, 5, 5577.	15.6	1,225
2	Layered Nanojunctions for Hydrogenâ€Evolution Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3621-3625.	7.2	793
3	Nanocrystalline Ni ₅ P ₄ : a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy and Environmental Science, 2015, 8, 1027-1034.	15.6	435
4	Using TiO ₂ as a Conductive Protective Layer for Photocathodic H ₂ Evolution. Journal of the American Chemical Society, 2013, 135, 1057-1064.	6.6	426
5	Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titaniumâ€Protected n ⁺ pâ€Silicon Photocathode. Angewandte Chemie - International Edition, 2012, 51, 9128-9131.	7.2	289
6	Electrochemical Hydrogen Evolution: Sabatier's Principle and the Volcano Plot. Journal of Chemical Education, 2012, 89, 1595-1599.	1.1	243
7	Climbing the Volcano of Electrocatalytic Activity while Avoiding Catalyst Corrosion: Ni ₃ P, a Hydrogen Evolution Electrocatalyst Stable in Both Acid and Alkali. ACS Catalysis, 2018, 8, 4408-4419.	5.5	178
8	Selective CO ₂ reduction to C ₃ and C ₄ oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy and Environmental Science, 2018, 11, 2550-2559.	15.6	165
9	Substrate Sizeâ€Selective Catalysis with Zeoliteâ€Encapsulated Gold Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 3504-3507.	7.2	160
10	A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chemical Communications, 2013, 49, 4965.	2.2	147
11	MoS2â€"an integrated protective and active layer on n+p-Si for solar H2 evolution. Physical Chemistry Chemical Physics, 2013, 15, 20000.	1.3	89
12	Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society, 2015, 137, 15460-15468.	6.6	64
13	<i>In situ</i> transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology, 2012, 23, 075705.	1.3	53
14	The Sabatier Principle Illustrated by Catalytic H ₂ O ₂ Decomposition on Metal Surfaces. Journal of Chemical Education, 2011, 88, 1711-1715.	1.1	41
15	Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces. Energy and Environmental Science, 2012, 5, 9866.	15.6	41
16	Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles. Topics in Catalysis, 2011, 54, 1026-1033.	1.3	35
17	Surface Hydrides on Fe ₂ P Electrocatalyst Reduce CO ₂ at Low Overpotential: Steering Selectivity to Ethylene Glycol. Journal of the American Chemical Society, 2021, 143, 21275-21285.	6.6	34
18	A general route for RuO ₂ deposition on metal oxides from RuO ₄ . Chemical Communications, 2012, 48, 967-969.	2.2	30

#	Article	IF	CITATIONS
19	CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in C1-formate production and H2 selectivity. Electrochimica Acta, 2021, 391, 138889.	2.6	27
20	Lightâ€Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope. ChemCatChem, 2013, 5, 2667-2672.	1.8	25
21	Creating stable interfaces between reactive materials: titanium nitride protects photoabsorber–catalyst interface in water-splitting photocathodes. Journal of Materials Chemistry A, 2019, 7, 2400-2411.	5.2	25
22	Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis. Applied Catalysis A: General, 2012, 433-434, 243-250.	2.2	14
23	Quenching of TiO2 photo catalysis by silver nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 230, 10-14.	2.0	11
24	Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts. Chinese Journal of Catalysis, 2018, 39, 16-26.	6.9	11
25	Highly efficient and durable Ill–V semiconductor-catalyst photocathodes <i>via</i> a transparent protection layer. Sustainable Energy and Fuels, 2020, 4, 1437-1442.	2.5	9
26	Creating Functional Oxynitride–Silicon Interfaces and SrNbO ₂ N Thin Films for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2022, 126, 5970-5979.	1.5	1
27	Using Electrocatalysts To Find New Uses For Captured CO2. , 2018, , .		0