Grigory L Dianov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3059126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mild phenotype of knockouts of the major apurinic/apyrimidinic endonuclease APEX1 in a non-cancer human cell line. PLoS ONE, 2021, 16, e0257473.	2.5	4
2	The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nature Communications, 2021, 12, 6959.	12.8	24
3	Boron-containing nucleosides as tools for boron-neutron capture therapy. American Journal of Cancer Research, 2021, 11, 4668-4682.	1.4	0
4	Sp1-independent downregulation of NHEJ in response to BER deficiency. DNA Repair, 2020, 86, 102740.	2.8	2
5	A unified model for the G1/S cell cycle transition. Nucleic Acids Research, 2020, 48, 12483-12501.	14.5	96
6	Srcâ€mediated phosphorylation of GAPDH regulates its nuclear localization and cellular response to DNA damage. FASEB Journal, 2020, 34, 10443-10461.	0.5	15
7	The role of Sp1 in the detection and elimination of cells with persistent DNA strand breaks. NAR Cancer, 2020, 2, zcaa004.	3.1	2
8	Twoâ€way crosstalk between BER and câ€NHEJ repair pathway is mediated by Polâ€Î² and Ku70. FASEB Journal, 2019, 33, 11668-11681.	0.5	12
9	E2F1 proteolysis via <scp>SCF</scp> â€cyclin F underlies synthetic lethality between cyclin F loss and Chk1 inhibition. EMBO Journal, 2019, 38, e101443.	7.8	40
10	RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nature Communications, 2018, 9, 424.	12.8	72
11	Sp1 phosphorylation by ATM downregulates BER and promotes cell elimination in response to persistent DNA damage. Nucleic Acids Research, 2018, 46, 1834-1846.	14.5	22
12	Interplay between base excision repair protein XRCC1 and ALDH2 predicts overall survival in lung and liver cancer patients. Cellular Oncology (Dordrecht), 2018, 41, 527-539.	4.4	23
13	Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts. Oncotarget, 2018, 9, 13666-13681.	1.8	20
14	Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability. Scientific Reports, 2017, 7, 15050.	3.3	21
15	DNA Base Excision Repair: The Achilles' Heel of Tumour Cells and their Microenvironment?. Current Pharmaceutical Design, 2017, 23, 4758-4772.	1.9	10
16	Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells. Nucleic Acids Research, 2017, 45, 10042-10055.	14.5	13
17	DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. International Journal of Molecular Sciences, 2016, 17, 856.	4.1	66
18	2.3 THz radiation: Absence of genotoxicity/mutagenicity in Escherichia coli and Salmonella typhimurium. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 803-804, 34-38.	1.7	15

GRIGORY L DIANOV

#	Article	IF	CITATIONS
19	p53 coordinates base excision repair to prevent genomic instability. Nucleic Acids Research, 2016, 44, 3165-3175.	14.5	39
20	Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Research, 2015, 43, 3667-3679.	14.5	39
21	Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell, 2015, 28, 557-568.	16.8	244
22	ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proceedings of the United States of America, 2015, 112, 3997-4002.	7.1	105
23	ARF induction in response to DNA strand breaks is regulated by PARP1. Nucleic Acids Research, 2014, 42, 2320-2329.	14.5	27
24	ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development (Cambridge), 2014, 141, 3966-3977.	2.5	40
25	AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget, 2014, 5, 6142-6167.	1.8	30
26	USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Research, 2013, 41, 1750-1756.	14.5	34
27	Co-ordination of base excision repair and genome stability. DNA Repair, 2013, 12, 326-333.	2.8	68
28	Mammalian Base Excision Repair: the Forgotten Archangel. Nucleic Acids Research, 2013, 41, 3483-3490.	14.5	306
29	Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability. Nucleic Acids Research, 2012, 40, 701-711.	14.5	53
30	Phosphorylation of PNKP by ATM prevents its proteasomal degradation and enhances resistance to oxidative stress. Nucleic Acids Research, 2012, 40, 11404-11415.	14.5	42
31	ATM-Dependent Downregulation of USP7/HAUSP by PPM1G Activates p53 Response to DNA Damage. Molecular Cell, 2012, 45, 801-813.	9.7	145
32	Regulation of oxidative DNA damage repair by DNA polymerase λ and MutYH by cross-talk of phosphorylation and ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 437-442.	7.1	67
33	USP47 Is a Deubiquitylating Enzyme that Regulates Base Excision Repair by Controlling Steady-State Levels of DNA Polymerase I ² . Molecular Cell, 2011, 41, 609-615.	9.7	102
34	The emerging role of Mule and ARF in the regulation of base excision repair. FEBS Letters, 2011, 585, 2831-2835.	2.8	18
35	Base excision repair targets for cancer therapy. American Journal of Cancer Research, 2011, 1, 845-51.	1.4	8
36	Ubiquitin ligase ARF-BP1/Mule modulates base excision repair. EMBO Journal, 2009, 28, 3207-3215.	7.8	119

GRIGORY L DIANOV

#	Article	IF	CITATIONS
37	Poly ADP-ribose polymerase-1: An international molecule of mystery. DNA Repair, 2008, 7, 1077-1086.	2.8	148
38	Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks. DNA Repair, 2008, 7, 932-940.	2.8	89
39	CHIP-Mediated Degradation and DNA Damage-Dependent Stabilization Regulate Base Excision Repair Proteins. Molecular Cell, 2008, 29, 477-487.	9.7	155
40	Overexpression of DNA polymerase results in an increased rate of frameshift mutations during base excision repair. Mutagenesis, 2007, 22, 183-188.	2.6	43
41	Targeting base excision repair to improve cancer therapies. Molecular Aspects of Medicine, 2007, 28, 345-374.	6.4	46
42	Co-ordination of DNA single strand break repair. DNA Repair, 2007, 6, 454-460.	2.8	94
43	Base excision repair fidelity in normal and cancer cells. Mutagenesis, 2006, 21, 173-178.	2.6	62
44	Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS Journal, 2005, 272, 2012-2021.	4.7	85
45	End-damage-specific proteins facilitate recruitment or stability of X-ray cross-complementing protein 1 at the sites of DNA single-strand break repair. FEBS Journal, 2005, 272, 5753-5763.	4.7	20
46	DNA Polymerase β Promotes Recruitment of DNA Ligase IIIαâ^'XRCC1 to Sites of Base Excision Repair. Biochemistry, 2005, 44, 10613-10619.	2.5	49
47	XRCC1-DNA polymerase interaction is required for efficient base excision repair. Nucleic Acids Research, 2004, 32, 2550-2555.	14.5	120
48	Repair of abasic sites in DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 531, 157-163.	1.0	170
49	Monitoring base excision repair by in vitro assays. Toxicology, 2003, 193, 35-41.	4.2	32
50	Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing Acta Biochimica Polonica, 2003, 50, 169-179.	0.5	78
51	Interaction of Human AP Endonuclease 1 with Flap Endonuclease 1 and Proliferating Cell Nuclear Antigen Involved in Long-Patch Base Excision Repair. Biochemistry, 2001, 40, 12639-12644.	2.5	136
52	Human DNA polymerase Î ² initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. EMBO Journal, 2001, 20, 1477-1482.	7.8	159
53	Single Nucleotide Patch Base Excision Repair Is the Major Pathway for Removal of Thymine Glycol from DNA in Human Cell Extracts. Journal of Biological Chemistry, 2000, 275, 11809-11813.	3.4	70
54	Role of DNA Polymerase β in the Excision Step of Long Patch Mammalian Base Excision Repair. Journal of Biological Chemistry, 1999, 274, 13741-13743.	3.4	202

#	Article	IF	CITATIONS
55	Repair Pathways for Processing of 8-Oxoguanine in DNA by Mammalian Cell Extracts. Journal of Biological Chemistry, 1998, 273, 33811-33816.	3.4	220
56	Reconstitution of the DNA base excision—repair pathway. Current Biology, 1994, 4, 1069-1076.	3.9	245
57	Repair of uracil residues closely spaced on the opposite strands of plasmid DNA results in double-strand break and deletion formation. Molecular Genetics and Genomics, 1991, 225, 448-452.	2.4	146