List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058942/publications.pdf Version: 2024-02-01

		331259	344852
116	1,704	21	36
papers	citations	h-index	g-index
121	121	121	1509
all docs	docs citations	times ranked	citing authors

HIAN HULĂ:N MEDELO

#	Article	IF	CITATIONS
1	Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics. Symmetry, 2022, 14, 202.	1.1	20
2	Exploring the Role of Chatbots and Messaging Applications in Higher Education: A Teacher's Perspective. Lecture Notes in Computer Science, 2022, , 205-223.	1.0	1
3	DatAC: A visual analytics platform to explore climate and air quality indicators associated with the COVID-19 pandemic in Spain. Science of the Total Environment, 2021, 750, 141424.	3.9	40
4	Studying How to Apply Chatbots Technology in Higher-Education: First Results and Future Strategies. Lecture Notes in Computer Science, 2021, , 185-198.	1.0	2
5	Event-Driven Multi-algorithm Optimization: Mixing Swarm and Evolutionary Strategies. Lecture Notes in Computer Science, 2021, , 747-762.	1.0	3
6	The Simpsons did it: Exploring the film trope space and its large scale structure. PLoS ONE, 2021, 16, e0248881.	1.1	4
7	StarTroper, a film trope rating optimizer using machine learning and evolutionary algorithms. Expert Systems, 2020, 37, e12525.	2.9	5
8	An Event-Based Architecture forÂCross-Breed Multi-population Bio-inspired Optimization Algorithms. Lecture Notes in Computer Science, 2020, , 686-701.	1.0	0
9	Introducing an Event-Based Architecture for Concurrent and Distributed Evolutionary Algorithms. Lecture Notes in Computer Science, 2018, , 399-410.	1.0	7
10	Increasing Performance via Gamification in a Volunteer-Based Evolutionary Computation System. Communications in Computer and Information Science, 2018, , 342-353.	0.4	0
11	Automated playtesting in collectible card games using evolutionary algorithms: A case study in hearthstone. Knowledge-Based Systems, 2018, 153, 133-146.	4.0	27
12	Revisiting Population Structure and Particle Swarm Performance. , 2018, , .		1
13	Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms. Lecture Notes in Computer Science, 2018, , 342-357.	1.0	8
14	Randomized parameter settings for a pool-based particle swarm optimization algorithm. , 2017, , .		2
15	Asynchronous Steady State Particle Swarm. , 2016, , .		0
16	Studying the effect of population size in distributed evolutionary algorithms on heterogeneous clusters. Applied Soft Computing Journal, 2016, 38, 530-547.	4.1	7
17	Ranking the Performance of Compiled and Interpreted Languages in Genetic Algorithms. , 2016, , .		1
18	A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System. Advances in Fuzzy Systems, 2015, 2015, 1-11.	0.6	18

#	Article	IF	CITATIONS
19	Towards automatic StarCraft strategy generation using genetic programming. , 2015, , .		16
20	A novel representation of genomic sequences for taxonomic clustering and visualization by means of self-organizing maps. Bioinformatics, 2015, 31, 736-744.	1.8	19
21	The EvoSpace Model for Pool-Based Evolutionary Algorithms. Journal of Grid Computing, 2015, 13, 329-349.	2.5	30
22	Corporate security solutions for BYOD: A novel user-centric and self-adaptive system. Computer Communications, 2015, 68, 83-95.	3.1	23
23	Soft Computing Techniques Applied to Corporate and Personal Security. , 2015, , .		3
24	Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem. Information Sciences, 2015, 306, 88-110.	4.0	8
25	Open classroom: enhancing student achievement on artificial intelligence through an international online competition. Journal of Computer Assisted Learning, 2015, 31, 14-31.	3.3	24
26	Modelling a Human-Like Bot in a First Person Shooter Game. International Journal of Creative Interfaces and Computer Graphics, 2015, 6, 21-37.	0.1	2
27	A methodology for designing emergent literary backstories on non-player characters using genetic algorithms. , 2014, , .		0
28	Enforcing corporate security policies via computational intelligence techniques. , 2014, , .		1
29	Assessing different architectures for evolutionary algorithms in javascript. , 2014, , .		Ο
30	Designing robust volunteer-based evolutionary algorithms. Genetic Programming and Evolvable Machines, 2014, 15, 221-244.	1.5	18
31	KANTS: A Stigmergic Ant Algorithm for Cluster Analysis and Swarm Art. IEEE Transactions on Cybernetics, 2014, 44, 843-856.	6.2	31
32	Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms. Lecture Notes in Computer Science, 2014, , 50-59.	1.0	1
33	Randomized Parameter Settings for Heterogeneous Workers in a Pool-Based Evolutionary Algorithm. Lecture Notes in Computer Science, 2014, , 702-710.	1.0	7
34	Particle Swarms with Dynamic Topologies and Conservation of Function Evaluations. , 2014, , .		1
35	Designing and testing a pool-based evolutionary algorithm. Natural Computing, 2013, 12, 149-162.	1.8	6
36	Pareto-based multi-colony multi-objective ant colony optimization algorithms: an island model proposal. Soft Computing, 2013, 17, 1175-1207.	2.1	29

#	Article	IF	CITATIONS
37	Complex systems in sports: Introduction to the special issue. Journal of Systems Science and Complexity, 2013, 26, 1-3.	1.6	4
38	A network analysis of the 2010 FIFA world cup champion team play. Journal of Systems Science and Complexity, 2013, 26, 21-42.	1.6	77
39	The sandpile mutation Genetic Algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Applied Intelligence, 2013, 39, 279-306.	3.3	5
40	hCHAC: A family of MOACO algorithms for the resolution of the bi-criteria military unit pathfinding problem. Computers and Operations Research, 2013, 40, 1524-1551.	2.4	13
41	Is there a free lunch for cloud-based evolutionary algorithms?. , 2013, , .		7
42	A search for scalable evolutionary solutions to the game of MasterMind. , 2013, , .		2
43	Photo rendering with swarms: From figurative to abstract pherogenic imaging. , 2013, , .		1
44	Influence of selective pressure on quality of solutions and speed of evolutionary mastermind. , 2013, ,		0
45	Partially connected topologies for particle swarm. , 2013, , .		1
46	Improving evolutionary solutions to the game of mastermind using an entropy-based scoring method. , 2013, , .		1
47	Developing services in a service oriented architecture for evolutionary algorithms. , 2013, , .		3
48	Using statistical tools to determine the significance and relative importance of the main parameters of an evolutionary algorithm. Intelligent Data Analysis, 2013, 17, 771-789.	0.4	3
49	A study on time-varying partially connected topologies for the particle swarm. , 2013, , .		5
50	Towards a multiobjective evolutionary approach to inventory and routing management in a retail chain. , 2013, , .		2
51	Fireworks: Evolutionary art project based on EvoSpace-interactive. , 2013, , .		6
52	An Analysis of a Selecto-Lamarckian Model of Multimemetic Algorithms with Dynamic Self-organized Topology. Lecture Notes in Computer Science, 2013, , 205-216.	1.0	1
53	Evolving the Strategies of Agents for the ANTS Game. Lecture Notes in Computer Science, 2013, , 324-333.	1.0	0
54	Swarm art with KANTS: Using an ant clustering algorithm for generating abstract paintings. , 2012, , .		0

#	Article	IF	CITATIONS
55	Using Student Conferences to Increase Participation in the Classroom: A Case Study. IEEE Transactions on Education, 2012, 55, 580-581.	2.0	5
56	Generating colored 2-dimensional representations of sleep EEG with the KANTS clustering algorithm. , 2012, , .		1
57	Towards a 2-dimensional self-organized framework for structured population-based metaheuristics. , 2012, , .		4
58	Determining the significance and relative importance of parameters of a simulated quenching algorithm using statistical tools. Applied Intelligence, 2012, 37, 239-254.	3.3	9
59	Effect of Noisy Fitness in Real-Time Strategy Games Player Behaviour Optimisation Using Evolutionary Algorithms. Journal of Computer Science and Technology, 2012, 27, 1007-1023.	0.9	26
60	Enhancing the Adaptive Dissortative Mating Genetic Algorithm in Fast Non-stationary Fitness Functions. Studies in Computational Intelligence, 2012, , 115-130.	0.7	0
61	Assessing speed-ups in commodity cloud storage services for distributed evolutionary algorithms. , 2011, , .		7
62	Optimizing player behavior in a real-time strategy game using evolutionary algorithms. , 2011, , .		19
63	Diversity Through Multiculturality: Assessing Migrant Choice Policies in an Island Model. IEEE Transactions on Evolutionary Computation, 2011, 15, 456-469.	7.5	52
64	A comparative study on the performance of dissortative mating and immigrants-based strategies for evolutionary dynamic optimization. Information Sciences, 2011, 181, 4428-4459.	4.0	5
65	From pherographia to color pherographia: Color sketching with artificial ants. , 2011, , .		2
66	Optimizing worst-case scenario in evolutionary solutions to the MasterMind puzzle. , 2011, , .		2
67	Using free cloud storage services for distributed evolutionary algorithms. , 2011, , .		8
68	Automatic detection of trends in time-stamped sequences: an evolutionary approach. Soft Computing, 2010, 14, 211-227.	2.1	5
69	Algorithm::Evolutionary, a flexible Perl module for evolutionary computation. Soft Computing, 2010, 14, 1091-1109.	2.1	22
70	EvAg: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines, 2010, 11, 227-246.	1.5	49
71	Statistical analysis of the parameters of the simulated annealing algorithm. , 2010, , .		0
72	An evolutionary approach to integrated inventory and routing management in a real world case. , 2010, , .		0

#	Article	IF	CITATIONS
73	Applying support vector machines and mutual information to book losses prediction. , 2010, , .		2
74	Controlling bots in a First Person Shooter game using genetic algorithms. , 2010, , .		9
75	Fluid evolutionary algorithms. , 2010, , .		9
76	Bloat Control Operators and Diversity in Genetic Programming: A Comparative Study. Evolutionary Computation, 2010, 18, 305-332.	2.3	35
77	Multikulti algorithm: Using genotypic differences in adaptive distributed evolutionary algorithm migration policies. , 2009, , .		3
78	Genotypic differences and migration policies in an island model. , 2009, , .		15
79	Improving genetic algorithms performance via deterministic population shrinkage. , 2009, , .		24
80	CHAC, A MOACO algorithm for computation of bi-criteria military unit path in the battlefield: Presentation and first results. International Journal of Intelligent Systems, 2009, 24, 818-843.	3.3	13
81	Increasing GP Computing Power for Free via Desktop GRID Computing and Virtualization. , 2009, , .		12
82	Studying the Cache Size in a Gossip-Based Evolutionary Algorithm. Studies in Computational Intelligence, 2009, , 131-140.	0.7	2
83	Evolvable agents, a fine grained approach for distributed evolutionary computing: walking towards the peer-to-peer computing frontiers. Soft Computing, 2008, 12, 1145-1156.	2.1	10
84	NectaRSS, an intelligent RSS feed reader. Journal of Network and Computer Applications, 2008, 31, 793-806.	5.8	15
85	Visualizing the evolution of a web-based social network. Journal of Network and Computer Applications, 2008, 31, 677-698.	5.8	10
86	Asynchronous distributed genetic algorithms with Javascript and JSON. , 2008, , .		26
87	Study of the Robustness of a Meta-Algorithm for the Estimation of Parameters in Artificial Neural Networks Design. , 2008, , .		1
88	Exploring population structures for locally concurrent and massively parallel Evolutionary Algorithms. , 2008, , .		9
89	Evolutionary system for prediction and optimization of hardware architecture performance. , 2008, , .		2
90	Comparing multiobjective evolutionary ensembles for minimizing type I and II errors for bankruptcy prediction. , 2008, , .		13

#	Article	IF	CITATIONS
91	Influence of parameters on the performance of a MOACO algorithm for solving the bi-criteria military path-finding problem. , 2008, , .		Ο
92	KANTS: Artifical Ant System for Classification. Lecture Notes in Computer Science, 2008, , 339-346.	1.0	4
93	A genetic algorithm for dynamic modelling and prediction of activity in document streams. , 2007, , .		5
94	Balancing safety and speed in the military path finding problem. , 2007, , .		5
95	Complex networks and evolutionary computation. , 2007, , .		1
96	Configuring an evolutionary tool for the inventory and transportation problem. , 2007, , .		3
97	Comparing evolutionary hybrid systems for design and optimization of multilayer perceptron structure along training parameters. Information Sciences, 2007, 177, 2884-2905.	4.0	25
98	Where is evolutionary computation going? A temporal analysis of the EC community. Genetic Programming and Evolvable Machines, 2007, 8, 239-253.	1.5	11
99	Empirical Validation of a Gossiping Communication Mechanism for Parallel EAs. , 2007, , 129-136.		6
100	Enhancing a MOACO for Solving the Bi-criteria Pathfinding Problem for a Military Unit in a Realistic Battlefield. , 2007, , 712-721.		8
101	Beyond source code: The importance of other artifacts in software development (a case study). Journal of Systems and Software, 2006, 79, 1233-1248.	3.3	75
102	Evolving RBF neural networks for time-series forecasting with EvRBF. Information Sciences, 2004, 165, 207-220.	4.0	88
103	Evolving two-dimensional fuzzy systems. Fuzzy Sets and Systems, 2003, 138, 381-398.	1.6	7
104	Statistical analysis of the parameters of a neuro-genetic algorithm. IEEE Transactions on Neural Networks, 2002, 13, 1374-1394.	4.8	53
105	Statistical analysis of the main parameters involved in the design of a genetic algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2002, 32, 31-37.	3.3	83
106	Web newspaper layout optimization using simulated annealing. IEEE Transactions on Systems, Man, and Cybernetics, 2002, 32, 686-691.	5.5	25
107	Optimization of web newspaper layout in real time. Computer Networks, 2001, 36, 311-321.	3.2	2
108	G-Prop: Global optimization of multilayer perceptrons using GAs. Neurocomputing, 2000, 35, 149-163.	3.5	125

7

#	Article	IF	CITATIONS
109	Evolving Multilayer Perceptrons. Neural Processing Letters, 2000, 12, 115-128.	2.0	58
110	Application of the Fuzzy Kohonen Clustering Network to biological macromolecules images classification. Lecture Notes in Computer Science, 1999, , 331-340.	1.0	8
111	SA-prop: Optimization of multilayer perceptron parameters using simulated annealing. Lecture Notes in Computer Science, 1999, , 661-670.	1.0	14
112	Title is missing!. Neural Processing Letters, 1998, 8, 55-65.	2.0	12
113	A GA-optimized neural network for classification of biological particles from electron-microscopy images. Lecture Notes in Computer Science, 1997, , 1174-1182.	1.0	1
114	Proteinotopic feature maps. Neurocomputing, 1994, 6, 443-454.	3.5	128
115	Application of vector quantization algorithms to protein classification and secondary structure computation. , 1991, , 415-421.		5
116	Parallel quadrant interlocking factorization on hypercube computers. Parallel Computing, 1990, 15, 87-100.	1.3	10