
Francesca Chiodi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impaired CD4+ T cell differentiation in HIV-1 infected patients receiving early anti-retroviral therapy. Genomics, 2022, 114, 110367.	1.3	2
2	Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers, 2021, 13, 305.	1.7	49
3	The Role of CXCL13 in Antibody Responses to HIV-1 Infection and Vaccination. Frontiers in Immunology, 2021, 12, 638872.	2.2	14
4	Direct contact between Plasmodium falciparum and human B-cells in a novel co-culture increases parasite growth and affects B-cell growth. Malaria Journal, 2021, 20, 303.	0.8	4
5	Distinct transcriptomic profiles of naÃ ⁻ ve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection. Genomics, 2021, 113, 3487-3500.	1.3	6
6	Undetectable Anti-HBs Antibodies: Need of a Booster Dose for HIV-1-Infected Individuals. Vaccines, 2021, 9, 1484.	2.1	1
7	Impact of chemokine C–C ligand 27, foreskin anatomy and sexually transmitted infections on HIV-1 target cell availability in adolescent South African males. Mucosal Immunology, 2020, 13, 118-127.	2.7	12
8	Early Antiretroviral Therapy May Preserve Vaccine Responses in Human Immunodeficiency Virus-Infected Patients by Preventing Damage to Long-Lived Plasma Cells. Journal of Infectious Diseases, 2020, 222, 176-179.	1.9	2
9	High CD45 expression of CD8+ and CD4+ T cells correlates with the size of HIV-1 reservoir in blood. Scientific Reports, 2020, 10, 20425.	1.6	8
10	Profiling of Inflammatory Proteins in Plasma of HIV-1-Infected Children Receiving Antiretroviral Therapy. Proteomes, 2020, 8, 24.	1.7	9
11	Streptococcus pneumoniae Nasopharyngeal Carriage among PCV-10-Vaccinated HIV-1-Infected Children with Maintained Serological Memory in Ethiopia. Pathogens, 2020, 9, 159.	1.2	1
12	Homing defects of B cells in HIV-1 infected children impair vaccination responses. Vaccine, 2019, 37, 2348-2355.	1.7	9
13	Mass cytometry identifies distinct CD4+ T cell clusters distinguishing HIV-1–infected patients according to antiretroviral therapy initiation. JCI Insight, 2019, 4, .	2.3	15
14	Mechanisms regulating expansion of <scp>CD</scp> 8+ T cells during <scp>HIV</scp> â€1 infection. Journal of Internal Medicine, 2018, 283, 257-267.	2.7	22
15	DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response. PLoS ONE, 2018, 13, e0197902.	1.1	16
16	Editorial: HIV-Induced Damage of B Cells and Production of HIV Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 297.	2.2	22
17	Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Scientific Reports, 2018, 8, 8078.	1.6	20
18	T follicular helper cells and antibody response to Hepatitis B virus vaccine in HIV-1 infected children receiving ART. Scientific Reports, 2017, 7, 8956.	1.6	19

FRANCESCA CHIODI

#	Article	IF	CITATIONS
19	Dendritic Cell Response to HIV-1 Is Controlled by Differentiation Programs in the Cells and Strain-Specific Properties of the Virus. Frontiers in Immunology, 2017, 8, 244.	2.2	2
20	IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection. Frontiers in Immunology, 2017, 8, 451.	2.2	16
21	Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?. Frontiers in Immunology, 2017, 8, 1966.	2.2	3
22	Impaired B cells survival upon production of inflammatory cytokines by HIV-1 exposed follicular dendritic cells. Retrovirology, 2016, 13, 61.	0.9	23
23	Dysfunctional phenotypes of CD4+ and CD8+ T cells are comparable in patients initiating ART during early or chronic HIV-1 infection. Medicine (United States), 2016, 95, e3738.	0.4	18
24	Pneumococcal vaccination of HIV-infected young adults is an important global priority. Aids, 2016, 30, 1991-1993.	1.0	1
25	Impaired Phenotype and Function of T Follicular Helper Cells in HIV-1-Infected Children Receiving ART. Medicine (United States), 2015, 94, e1125.	0.4	18
26	Toll-Like Receptor 3 Signalling Up-Regulates Expression of the HIV Co-Receptor G-Protein Coupled Receptor 15 on Human CD4+ T Cells. PLoS ONE, 2014, 9, e88195.	1.1	11
27	Immune Activation and HIV Target Cells in the Adolescent Female Genital Tract. AIDS Research and Human Retroviruses, 2014, 30, A46-A46.	0.5	0
28	Knowing Whom We Are trying to Protect: An Assessment of HIV Risk in South African Adolescent Females. AIDS Research and Human Retroviruses, 2014, 30, A131-A131.	0.5	1
29	Combined efforts in immunology and vaccinology will lead to effective vaccines against <scp>HIV</scp> , tuberculosis and malaria. Journal of Internal Medicine, 2014, 275, 442-443.	2.7	1
30	Human immunodeficiency virus antibodies and the vaccine problem. Journal of Internal Medicine, 2014, 275, 444-455.	2.7	6
31	B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial. Vaccine, 2014, 32, 3350-3356.	1.7	25
32	B-cell subset alterations and correlated factors in HIV-1 infection. Aids, 2013, 27, 1209-1217.	1.0	66
33	Impairment of B-cell functions during HIV-1 infection. Aids, 2013, 27, 2323-2334.	1.0	84
34	Concerted effect of lymphopenia, viraemia and T-cell activation on Fas expression of peripheral B cells in HIV-1-infected patients. Aids, 2013, 27, 155-162.	1.0	22
35	Immune activation and increased ILâ€21R expression are associated with the loss of memory B cells during HIVâ€1 infection. Journal of Internal Medicine, 2012, 272, 492-503.	2.7	15
36	Survival and Proliferation of CD28- T Cells During HIV-1 Infection Relate to the Amplitude of Viral Replication. Journal of Infectious Diseases, 2011, 203, 1658-1667.	1.9	20

FRANCESCA CHIODI

#	Article	IF	CITATIONS
37	The Impact of Inflammation and Immune Activation on B Cell Differentiation during HIV-1 Infection. Frontiers in Immunology, 2011, 2, 90.	2.2	14
38	The impact of active HIV-1 replication on the physiological age-related decline of immature-transitional B-cells in HIV-1 infected children. Aids, 2010, 24, 2075-2080.	1.0	21
39	Dysfunctional B-cell responses during HIV-1 infection: implication for influenza vaccination and highly active antiretroviral therapy. Lancet Infectious Diseases, The, 2010, 10, 499-503.	4.6	79
40	New therapy to revert dysfunctional antibody responses during HIV-1 infection. Journal of Clinical Investigation, 2010, 120, 3810-3813.	3.9	8
41	Timing of HAART defines the integrity of memory B cells and the longevity of humoral responses in HIV-1 vertically-infected children. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7939-7944.	3.3	153
42	B cell immunopathology during HIV-1 infection: Lessons to learn for HIV-1 vaccine design. Vaccine, 2008, 26, 3016-3025.	1.7	48
43	Altered expression of the receptor-ligand pair CXCR5/CXCL13 in B cells during chronic HIV-1 infection. Blood, 2008, 112, 4401-4410.	0.6	82
44	Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection. Blood, 2006, 108, 1580-1587.	0.6	255
45	Loss of IL-7Rα is associated with CD4 T-cell depletion, high interleukin-7 levels and CD28 down-regulation in HIV infected patients. Aids, 2005, 19, 2077-2086.	1.0	122
46	Mousepox conjunctivitis: the role of Fas/FasL-mediated apoptosis of epithelial cells in virus dissemination. Journal of General Virology, 2005, 86, 2007-2018.	1.3	8
47	Primary HIV-1 infection sets the stage for important B lymphocyte dysfunctions. Aids, 2005, 19, 1947-1955.	1.0	132
48	Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood, 2004, 103, 2180-2186.	0.6	280
49	Loss of memory (CD27) B lymphocytes in HIV-1 infection. Aids, 2001, 15, 957-964.	1.0	185
50	Cross-linking of LFA-1 molecule enhances Fas mediated apoptosis of Jurkat and Burkitt lymphoma cell lines. Cell Death and Differentiation, 2001, 8, 1123-1124.	5.0	2
51	High Plasma Levels of Soluble Fas in HIV Type 1-Infected Subjects Are Not Normalized during Highly Active Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2000, 16, 1379-1384.	0.5	18
52	Upregulated expression of Fas and Fas ligand in brain through the spectrum of HIV-1 infection. Acta Neuropathologica, 1999, 98, 355-362.	3.9	23
53	Induction of human immunodeficiency virus type 1 replication in human glial cells after proinflammatory cytokines stimulation: Effect of IFN?, IL1?, and TNF? on differentiation and chemokine production in glial cells. Glia, 1998, 23, 304-315.	2.5	58
54	Analysis of ENV V3 sequences from HIV-1-infected brain indicates restrained virus expression throughout the disease. Journal of Medical Virology, 1996, 49, 41-48.	2.5	34

#	Article	IF	CITATIONS
55	HIV-1 Infection of the brain: Which pathogenic mechanisms are relevant for tissue damage?. Reviews in Medical Virology, 1995, 5, 105-119.	3.9	5
56	Tissue lesions in AIDS patients involve both the lymphoid and the nervous system. Aids, 1995, 9 Suppl A, S41-8.	1.0	0
57	ANTIBODY RESPONSE IN PRIMARY HUMAN IMMUNODEFICIENCY VIRUS INFECTION. Lancet, The, 1987, 329, 1249-1253.	6.3	174