Teresa Lino-Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058703/publications.pdf

Version: 2024-02-01

TERESA LINO-NETO

#	Article	IF	CITATIONS
1	Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem. Microbial Ecology, 2018, 76, 668-679.	2.8	105
2	An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Molecular Biology Reporter, 2003, 21, 333-338.	1.8	86
3	Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 2017, 97, 4273-4284.	3.5	82
4	Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza, 2007, 17, 185-193.	2.8	76
5	Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling development. Plant Methods, 2014, 10, 7.	4.3	76
6	A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics, 2014, 15, 371.	2.8	53
7	Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect. Microbial Ecology, 2020, 80, 145-157.	2.8	53
8	Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecology, 2010, 3, 9-19.	1.6	51
9	Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genomics, 2017, 18, 891.	2.8	50
10	Evaluating stress responses in cowpea under drought stress. Journal of Plant Physiology, 2019, 241, 153001.	3.5	50
11	Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling. PLoS ONE, 2014, 9, e98376.	2.5	45
12	Fungal Diversity Associated to the Olive Moth, Prays Oleae Bernard: A Survey for Potential Entomopathogenic Fungi. Microbial Ecology, 2012, 63, 964-974.	2.8	35
13	RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the Cork Oak Root Response to Drought. Frontiers in Plant Science, 2015, 6, 1195.	3.6	30
14	Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype. Scientific Reports, 2019, 9, 5882.	3.3	30
15	A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiological Research, 2013, 168, 1-5.	5.3	26
16	Soil <scp>DNA</scp> pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environmental Microbiology Reports, 2015, 7, 946-954.	2.4	26
17	Phosphate transport by proteoid roots of Hakea sericea. Plant Science, 2007, 173, 550-558.	3.6	23
18	Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 2019, 247, 107-115.	3.6	23

Teresa Lino-Neto

#	Article	IF	CITATIONS
19	Impact of plant genotype and plant habitat in shaping bacterial pathobiome: a comparative study in olive tree. Scientific Reports, 2020, 10, 3475.	3.3	23
20	Illuminating Olea europaea L. endophyte fungal community. Microbiological Research, 2021, 245, 126693.	5.3	22
21	Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes. Mycorrhiza, 2018, 28, 357-368.	2.8	19
22	Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza, 2012, 22, 41-49.	2.8	17
23	The Necrotroph Botrytis cinerea Induces a Non-Host Type II Resistance Mechanism in Pinus pinaster Suspension-Cultured Cells. Plant and Cell Physiology, 2008, 49, 386-395.	3.1	16
24	Impact of Combined Heat and Salt Stresses on Tomato Plants—Insights into Nutrient Uptake and Redox Homeostasis. Antioxidants, 2022, 11, 478.	5.1	16
25	Climatic impacts on the bacterial community profiles of cork oak soils. Applied Soil Ecology, 2019, 143, 89-97.	4.3	15
26	A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bulletin of Entomological Research, 2016, 106, 695-699.	1.0	14
27	European cowpea landraces for a more sustainable agriculture system and novel foods. Journal of the Science of Food and Agriculture, 2017, 97, 4399-4407.	3.5	14
28	Going virtual and going wide: comparing Team-Based Learning in-class versus online and across disciplines. Education and Information Technologies, 2022, 27, 2311-2329.	5.7	14
29	First report of Hakea sericea leaf infection caused by Pestalotiopsis funerea in Portugal. Plant Pathology, 2004, 53, 535-535.	2.4	13
30	Effect of soil tillage on natural occurrence of fungal entomopathogens associated to Prays oleae Bern Scientia Horticulturae, 2013, 159, 190-196.	3.6	12
31	Cork Oak Endophytic Fungi as Potential Biocontrol Agents against Biscogniauxia mediterranea and Diplodia corticola. Journal of Fungi (Basel, Switzerland), 2020, 6, 287.	3.5	12
32	The influence of bioclimate on soil microbial communities of cork oak. BMC Microbiology, 2022, 22, .	3.3	10
33	Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreening. Plant Science, 2004, 167, 889-898.	3.6	9
34	Screening the Olive Tree Phyllosphere: Search and Find Potential Antagonists Against Pseudomonas savastanoi pv. savastanoi. Frontiers in Microbiology, 2020, 11, 2051.	3.5	7
35	Bacteria could help ectomycorrhizae establishment under climate variations. Mycorrhiza, 2021, 31, 395-401.	2.8	7
36	A Strategy for the Identification of New Abiotic Stress Determinants inArabidopsisUsing Web-Based Data Mining and Reverse Genetics. OMICS A Journal of Integrative Biology, 2011, 15, 935-947.	2.0	6

Teresa Lino-Neto

#	Article	IF	CITATIONS
37	Salicylic acid up-regulates the expression of chloroplastic Cu, Zn-superoxide dismutase in needles of maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2004, 61, 847-850.	2.0	6
38	Impact of carbon and phosphate starvation on growth and programmed cell death of maritime pine suspension cells. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 478-486.	2.1	5
39	Cork Oak Forests Soil Bacteria: Potential for Sustainable Agroforest Production. Microorganisms, 2021, 9, 1973.	3.6	5
40	Olive Fungal Epiphytic Communities Are Affected by Their Maturation Stage. Microorganisms, 2022, 10, 376.	3.6	5
41	Signaling in Ectomycorrhizal Symbiosis Establishment. Soil Biology, 2011, , 157-175.	0.8	3
42	In vitro interactions between the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare fungi: morphological aspects and volatile production. Mycology, 2021, 12, 216-229.	4.4	3
43	Mycorrhization of Fagaceae Forests Within Mediterranean Ecosystems. , 2017, , 75-97.		3
44	Detection of Bactrocera oleae (Diptera: Tephritidae) DNA in the gut of the soil species Pseudoophonus rufipes (Coleoptera: Carabidae). Spanish Journal of Agricultural Research, 2018, 16, e1007.	0.6	3
45	Phylogenetic analysis and genetic diversity of the xylariaceous ascomycete BiscogniauxiaÂmediterranea from cork oak forests in different bioclimates. Scientific Reports, 2022, 12, 2646.	3.3	3
46	Fungal community in chestnut orchards with different Hypholoma fasciculare aboveground abundance: potential implications for sustainable production. Revista De Ciências Agrárias, 2017, 40, 124-132.	0.2	2
47	Caracterização agro-morfológica de acessos de feijão-frade (Vigna unguiculata): bases para o melhoramento. Revista De Ciências Agrárias, 2016, 39, 506-517.	0.2	2
48	EFFECT OF SOIL TILLAGE ON DIVERSITY AND ABUNDANCE OF MACROFUNGI ASSOCIATED WITH CHESTNUT TREE IN THE NORTHEAST OF PORTUGAL. Acta Horticulturae, 2005, , 685-690.	0.2	1
49	Plant-mediated effects on entomopathogenic fungi: how the olive tree influences fungal enemies of the olive moth, Prays oleae. BioControl, 2015, 60, 93-102.	2.0	1
50	The Influence of Endophytes on Cork Oak Forests Under a Changing Climate. , 2019, , 250-274.		1
51	Distinguishing Allies from Enemies—A Way for a New Green Revolution. Microorganisms, 2022, 10, 1048.	3.6	1
52	Cover Image, Volume 97, Issue 13. Journal of the Science of Food and Agriculture, 2017, 97, i.	3.5	0