Zi-Jian Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305850/publications.pdf Version: 2024-02-01

471509 477307 1,520 29 17 29 h-index citations g-index papers 29 29 29 1833 docs citations times ranked citing authors all docs

71-LIAN ZHENC

#	Article	IF	CITATIONS
1	Toward Practical Highâ€Energy and Highâ€Power Lithium Battery Anodes: Present and Future. Advanced Science, 2022, 9, e2105213.	11.2	84
2	MOF composite fibrous separators for high-rate lithium-ion batteries. Journal of Materials Science, 2021, 56, 5868-5877.	3.7	24
3	Role of a nanoparticle network in polymer mechanical reinforcement: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 23, 21797-21807.	2.8	4
4	Flexible Carbon Nanofibrous Membranes with Adjustable Hierarchical Porous Structure as High apacity Anodes for Sodiumâ€ion Batteries. Energy Technology, 2021, 9, 2100049.	3.8	11
5	Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy and Environmental Science, 2021, 14, 1835-1853.	30.8	150
6	Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 2020, 7, 2002212.	11.2	95
7	Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Materials, 2020, 30, 9-26.	18.0	127
8	Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74, 104817.	16.0	112
9	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy, 2020, 73, 104731.	16.0	36
10	Low volume change composite lithium metal anodes. Nano Energy, 2019, 64, 103910.	16.0	68
11	A pomegranate-like porous carbon nanomaterial as selenium host for stable lithium-selenium batteries. Materials Letters, 2019, 244, 134-137.	2.6	5
12	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	13.8	287
13	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	2.0	52
14	Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations. Soft Matter, 2018, 14, 1219-1226.	2.7	16
15	Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes. Nano Energy, 2018, 48, 369-376.	16.0	99
16	Theoretical Model of Time–Temperature Superposition Principle of the Selfâ€Healing Kinetics of Supramolecular Polymer Nanocomposites. Macromolecular Rapid Communications, 2018, 39, e1800382.	3.9	20
17	Nitrogen and Oxygen Co-doped Graphitized Carbon Fibers with Sodiophilic-Rich Sites Guide Uniform Sodium Nucleation for Ultrahigh-Capacity Sodium-Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 30417-30425.	8.0	78
18	Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. Journal of Materials Science, 2018, 53, 12421-12431.	3.7	20

ZI-JIAN ZHENG

#	Article	IF	CITATIONS
19	Molecular Dynamics Simulation Study of Polymer Nanocomposites with Controllable Dispersion of Spherical Nanoparticles. Journal of Physical Chemistry B, 2017, 121, 10146-10156.	2.6	11
20	Self-Assembly of Block Copolymer Chains To Promote the Dispersion of Nanoparticles in Polymer Nanocomposites. Journal of Physical Chemistry B, 2017, 121, 9311-9318.	2.6	16
21	Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility. Polymers, 2016, 8, 270.	4.5	13
22	Tailoring the Static and Dynamic Mechanical Properties of Tri-Block Copolymers through Molecular Dynamics Simulation. Polymers, 2016, 8, 335.	4.5	15
23	Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation. Nanotechnology, 2016, 27, 265704.	2.6	16
24	Tuning the visco-elasticity of elastomeric polymer materials via flexible nanoparticles: insights from molecular dynamics simulation. RSC Advances, 2016, 6, 28666-28678.	3.6	18
25	Stress–strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation. Physical Chemistry Chemical Physics, 2016, 18, 27232-27244.	2.8	16
26	Influence of Morphology on the Mechanical Properties of Polymer Nanocomposites Filled with Uniform or Patchy Nanoparticles. Langmuir, 2016, 32, 8473-8483.	3.5	15
27	Tuning the structure and mechanical property of polymer nanocomposites by employing anisotropic nanoparticles as netpoints. Physical Chemistry Chemical Physics, 2016, 18, 25090-25099.	2.8	5
28	Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile. Nano Energy, 2016, 28, 87-96.	16.0	72
29	Revealing the toughening mechanism of graphene–polymer nanocomposite through molecular dynamics simulation. Nanotechnology, 2015, 26, 291003.	2.6	35