San-Lang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058177/publications.pdf

Version: 2024-02-01

76326 118850 5,526 163 40 62 citations h-index g-index papers 168 168 168 3863 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Utilization of By-Product of Groundnut Oil Processing for Production of Prodigiosin by Microbial Fermentation and Its Novel Potent Anti-Nematodes Effect. Agronomy, 2022, 12, 41.	3.0	16
2	Novel α-Amylase Inhibitor Hemi-Pyocyanin Produced by Microbial Conversion of Chitinous Discards. Marine Drugs, 2022, 20, 283.	4.6	9
3	Utilization of Fishery-Processing By-Product Squid Pens for Scale-Up Production of Phenazines via Microbial Conversion and Its Novel Potential Antinematode Effect. Fishes, 2022, 7, 113.	1.7	6
4	Conversion of Fishery Waste to Proteases by Streptomyces speibonae and Their Application in Antioxidant Preparation. Fishes, 2022, 7, 140.	1.7	1
5	Conversion of Wheat Bran to Xylanases and Dye Adsorbent by Streptomyces thermocarboxydus. Polymers, 2021, 13, 287.	4.5	11
6	Conversion of Pectin-Containing By-Products to Pectinases by Bacillus amyloliquefaciens and Its Applications on Hydrolyzing Banana Peels for Prebiotics Production. Polymers, 2021, 13, 1483.	4.5	14
7	Bioprocessing of Marine Chitinous Wastes for the Production of Bioactive Prodigiosin. Molecules, 2021, 26, 3138.	3.8	25
8	Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers, 2021, 13, 1959.	4.5	4
9	Proteases Production and Chitin Preparation from the Liquid Fermentation of Chitinous Fishery By-Products by Paenibacillus elgii. Marine Drugs, 2021, 19, 477.	4.6	13
10	Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities. Fishes, 2021, 6, 30.	1.7	17
11	Potential Application of Rhizobacteria Isolated from the Central Highland of Vietnam as an Effective Biocontrol Agent of Robusta Coffee Nematodes and as a Bio-Fertilizer. Agronomy, 2021, 11, 1887.	3.0	12
12	Production of Thermophilic Chitinase by Paenibacillus sp. TKU052 by Bioprocessing of Chitinous Fishery Wastes and Its Application in N-acetyl-D-glucosamine Production. Polymers, 2021, 13, 3048.	4.5	13
13	Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect. Molecules, 2021, 26, 6270.	3.8	15
14	Novel Efficient Bioprocessing of Marine Chitins into Active Anticancer Prodigiosin. Marine Drugs, 2020, 18, 15.	4.6	31
15	Utilization of Seafood Processing By-Products for Production of Proteases by Paenibacillus sp. TKU052 and Their Application in Biopeptides' Preparation. Marine Drugs, 2020, 18, 574.	4.6	11
16	Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent. Polymers, 2020, 12, 2228.	4.5	14
17	Reclamation of beneficial bioactivities of herbal antioxidant condensed tannin extracted from Euonymus laxiflorus. Research on Chemical Intermediates, 2020, 46, 4751-4766.	2.7	6
18	Utilization of Crab Waste for Cost-Effective Bioproduction of Prodigiosin. Marine Drugs, 2020, 18, 523.	4.6	24

#	Article	IF	CITATIONS
19	Microbial Reclamation of Chitin and Protein-Containing Marine By-Products for the Production of Prodigiosin and the Evaluation of Its Bioactivities. Polymers, 2020, 12, 1328.	4.5	19
20	Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules, 2020, 25, 2744.	3.8	26
21	Coagulation of Chitin Production Wastewater from Shrimp Scraps with By-Product Chitosan and Chemical Coagulants. Polymers, 2020, 12, 607.	4.5	17
22	Phytophthora Antagonism of Endophytic Bacteria Isolated from Roots of Black Pepper (Piper nigrum) Tj ETQq0 (0 rgBT /C	verlock 10 Tf
23	Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers, 2020, 12, 1163.	4.5	17
24	New indications of potential rat intestinal \hat{l} ±-glucosidase inhibition by Syzygium zeylanicum (L.) and its hypoglycemic effect in mice. Research on Chemical Intermediates, 2019, 45, 6061-6071.	2.7	7
25	Anti-Oxidant and Anti-Diabetes Potential of Water-Soluble Chitosan–Glucose Derivatives Produced by Maillard Reaction. Polymers, 2019, 11, 1714.	4.5	34
26	Conversion of Shrimp Head Waste for Production of a Thermotolerant, Detergent-Stable, Alkaline Protease by Paenibacillus sp Catalysts, 2019, 9, 798.	3.5	21
27	Plant growth promotion and fungal antagonism of endophytic bacteria for the sustainable production of black pepper (Piper nigrum L.). Research on Chemical Intermediates, 2019, 45, 5325-5339.	2.7	6
28	A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum) Tj ETQq	0 0 0 rgBT 2.7	Overlock 10
29	Reclamation of rhizobacteria newly isolated from black pepper plant roots as potential biocontrol agents of root-knot nematodes. Research on Chemical Intermediates, 2019, 45, 5293-5307.	2.7	18
30	An Exochitinase with N-Acetyl- \hat{l}^2 -Glucosaminidase-Like Activity from Shrimp Head Conversion by Streptomyces speibonae and Its Application in Hydrolyzing \hat{l}^2 -Chitin Powder to Produce N-Acetyl-d-Glucosamine. Polymers, 2019, 11, 1600.	4.5	23
31	Bioprocessing shrimp shells for rat intestinal α-glucosidase inhibitor and its effect on reducing blood glucose in a mouse model. Research on Chemical Intermediates, 2019, 45, 4829-4846.	2.7	9
32	Reclamation of Fishery Processing Waste: A Mini-Review. Molecules, 2019, 24, 2234.	3.8	78
33	Production of a Thermostable Chitosanase from Shrimp Heads via Paenibacillus mucilaginosus TKU032 Conversion and its Application in the Preparation of Bioactive Chitosan Oligosaccharides. Marine Drugs, 2019, 17, 217.	4.6	32
34	Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. International Journal of Biological Macromolecules, 2019, 131, 706-715.	7.5	75
35	Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules, 2019, 24, 691.	3.8	20
36	Study of Novel Endophytic Bacteria for Biocontrol of Black Pepper Root-knot Nematodes in the Central Highlands of Vietnam. Agronomy, 2019, 9, 714.	3.0	29

#	Article	IF	Citations
37	Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochemistry, 2019, 76, 18-24.	3.7	24
38	Bioactivity-Guided Purification of Novel Herbal Antioxidant and Anti-NO Compounds from Euonymus laxiflorus Champ Molecules, 2019, 24, 120.	3.8	13
39	Frontier chemistry and materials for the twenty-first century, No. 3: preface. Research on Chemical Intermediates, 2019, 45, 1-1.	2.7	7
40	The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Research on Chemical Intermediates, 2019, 45, 727-742.	2.7	39
41	Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates, 2019, 45, 51-63.	2.7	90
42	Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park, Vietnam. Research on Chemical Intermediates, 2019, 45, 33-49.	2.7	21
43	Conversion of squid pens to chitosanases and dye adsorbents via Bacillus cereus. Research on Chemical Intermediates, 2018, 44, 4903-4911.	2.7	19
44	Reclamation of shrimp heads for the production of \hat{l}_{\pm} -glucosidase inhibitors by Staphylococcus sp. TKU043. Research on Chemical Intermediates, 2018, 44, 4929-4937.	2.7	20
45	Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Research on Chemical Intermediates, 2018, 44, 4889-4901.	2.7	34
46	Conversion of shrimp heads to \hat{l} ±-glucosidase inhibitors via co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041. Research on Chemical Intermediates, 2018, 44, 4597-4607.	2.7	16
47	Isolation and identification of novel $\hat{l}\pm$ -amylase inhibitors from Euonymus laxiflorus Champ Research on Chemical Intermediates, 2018, 44, 1411-1424.	2.7	13
48	New novel α–glucosidase inhibitors produced by microbial conversion. Process Biochemistry, 2018, 65, 228-232.	3.7	32
49	In vitro α-glucosidase and α-amylase inhibition, and in vivo anti-hyperglycemic effects of Psidium littorale Raddi leaf extract. Research on Chemical Intermediates, 2018, 44, 1745-1753.	2.7	13
50	Isolation and Identification of Potent Antidiabetic Compounds from Antrodia cinnamomea—An Edible Taiwanese Mushroom. Molecules, 2018, 23, 2864.	3.8	26
51	Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans. Marine Drugs, 2018, 16, 429.	4.6	33
52	Novel Potent Hypoglycemic Compounds from Euonymus laxiflorus Champ. and Their Effect on Reducing Plasma Glucose in an ICR Mouse Model. Molecules, 2018, 23, 1928.	3.8	16
53	New Records of Potent In-Vitro Antidiabetic Properties of Dalbergia tonkinensis Heartwood and the Bioactivity-Guided Isolation of Active Compounds. Molecules, 2018, 23, 1589.	3.8	27
54	Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042. Marine Drugs, 2018, 16, 83.	4.6	24

#	Article	IF	CITATIONS
55	Production and Bioactivity-Guided Isolation of Antioxidants with α-Glucosidase Inhibitory and Anti-NO Properties from Marine Chitinous Materials. Molecules, 2018, 23, 1124.	3.8	26
56	Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Research on Chemical Intermediates, 2017, 43, 3527-3537.	2.7	87
57	Microbial reclamation of squid pens and shrimp shells. Research on Chemical Intermediates, 2017, 43, 3445-3462.	2.7	25
58	Screening and evaluation of \hat{l}_{\pm} -glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province, Vietnam. Research on Chemical Intermediates, 2017, 43, 3599-3612.	2.7	29
59	Porcine pancreatic α-amylase inhibitors from Euonymus laxiflorus Champ Research on Chemical Intermediates, 2017, 43, 259-269.	2.7	23
60	Free radical scavenging and antidiabetic activities of Euonymus laxiflorus Champ. extract. Research on Chemical Intermediates, 2017, 43, 5615-5624.	2.7	14
61	Utilization of Fishery Processing By-Product Squid Pens for α-Glucosidase Inhibitors Production by Paenibacillus sp Marine Drugs, 2017, 15, 274.	4.6	35
62	Reclamation of Marine Chitinous Materials for the Production of \hat{l}_{\pm} -Glucosidase Inhibitors via Microbial Conversion. Marine Drugs, 2017, 15, 350.	4.6	33
63	Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium, Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse Model. International Journal of Molecular Sciences, 2017, 18, 700.	4.1	26
64	Application of Chitinous Materials in Production and Purification of a Poly(l-lactic acid) Depolymerase from Pseudomonas tamsuii TKU015. Polymers, 2016, 8, 98.	4.5	19
65	An Amphiprotic Novel Chitosanase from Bacillus mycoides and Its Application in the Production of Chitooligomers with Their Antioxidant and Anti-Inflammatory Evaluation. International Journal of Molecular Sciences, 2016, 17, 1302.	4.1	62
66	Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Marine Drugs, 2016, 14, 40.	4.6	60
67	Conversion of Squid Pen to Homogentisic Acid via Paenibacillus sp. TKU036 and the Antioxidant and Anti-Inflammatory Activities of Homogentisic Acid. Marine Drugs, 2016, 14, 183.	4.6	23
68	Anti-oxidant and antidiabetic effect of some medicinal plants belong to Terminalia species collected in Dak Lak Province, Vietnam. Research on Chemical Intermediates, 2016, 42, 5859-5871.	2.7	24
69	Effect of Terminalia nigrovenulosa extracts and their isolated compounds on intracellular ROS generation and MMP expression in HT1080 cells. Research on Chemical Intermediates, 2016, 42, 2055-2073.	2.7	3
70	2-Pyridone-based fluorophores containing 4-dialkylamino-phenyl group: Synthesis and fluorescence properties in solutions and in solid state. Dyes and Pigments, 2016, 124, 196-202.	3.7	12
71	Synthesis of Indeno[1,2â€ <i>d</i>]pyrimidinâ€5â€Ones and Their Fluorescence in Solid State. Journal of Heterocyclic Chemistry, 2016, 53, 414-420.	2.6	1
72	Squid Pen Chitin Chitooligomers as Food Colorants Absorbers. Marine Drugs, 2015, 13, 681-696.	4.6	17

#	Article	IF	Citations
73	Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities. Marine Drugs, 2015, 13, 1847-1863.	4.6	95
74	Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption. Marine Drugs, 2015, 13, 4576-4593.	4.6	29
75	Production of insecticidal materials from Pseudomonas tamsuii. Research on Chemical Intermediates, 2015, 41, 7965-7971.	2.7	9
76	Tyrosinase inhibitory activity of supernatant and semi-purified extracts from squid pen fermented with Burkholderia cepacia TKU025. Research on Chemical Intermediates, 2015, 41, 6105-6116.	2.7	5
77	Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators. Carbohydrate Polymers, 2014, 108, 331-337.	10.2	51
78	Purification of a thermostable chitinase from Bacillus cereus by chitin affinity and its application in microbial community changes in soil. Bioprocess and Biosystems Engineering, 2014, 37, 1201-1209.	3.4	17
79	Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Research on Chemical Intermediates, 2014, 40, 2165-2175.	2.7	83
80	Exopolysaccharides and Antimicrobial Biosurfactants Produced by Paenibacillus macerans TKU029. Applied Biochemistry and Biotechnology, 2014, 172, 933-950.	2.9	64
81	Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules, 2014, 63, 8-14.	7.5	56
82	Production, purification and characterisation of a chitosanase from Bacillus cereus. Research on Chemical Intermediates, 2014, 40, 2237-2248.	2.7	23
83	Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source. Research on Chemical Intermediates, 2014, 40, 2249-2258.	2.7	20
84	Environmental chitinous materials as adsorbents for one-step purification of protease and chitosanase. Research on Chemical Intermediates, 2014, 40, 2363-2369.	2.7	13
85	Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydrate Polymers, 2013, 92, 2141-2148.	10.2	21
86	Thermal properties and characterization of surface-treated RSF-reinforced polylactide composites. Polymer Bulletin, 2013, 70, 3221-3239.	3.3	17
87	Enhancement of Prodigiosin Production by <i>Serratia marcescens</i> TKU011 and Its Insecticidal Activity Relative to Food Colorants. Journal of Food Science, 2013, 78, M1743-51.	3.1	28
88	A Novel Compound with Antioxidant Activity Produced by Serratia ureilytica TKU013. Journal of Agricultural and Food Chemistry, 2012, 60, 9043-9047.	5.2	11
89	Utilisation of chitinous materials in pigment adsorption. Food Chemistry, 2012, 135, 1134-1140.	8.2	21
90	Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 2012, 90, 1305-1313.	10.2	62

#	Article	IF	Citations
91	Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydrate Research, 2012, 362, 38-46.	2.3	51
92	Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochemistry, 2012, 47, 1684-1690.	3.7	41
93	Synthesis of 6-(4-diethylamino)phenyl-2-oxo-2H-pyran-3-carbonitorile derivatives and their fluorescence in solid state and in solutions. Dyes and Pigments, 2012, 92, 1069-1074.	3.7	10
94	Reclamation of squid pen by Bacillus licheniformis TKU004 for the production of thermally stable and antimicrobial biosurfactant. Biocatalysis and Agricultural Biotechnology, 2012, 1, 62-69.	3.1	25
95	Microbial reclamation of squid pen. Biocatalysis and Agricultural Biotechnology, 2012, 1, 177-180.	3.1	22
96	Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology, 2011, 28, 559-565.	4.4	37
97	Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegradation, 2011, 22, 939-948.	3.0	31
98	Isolation and Identification of a Novel Antioxidant with Antitumour Activity from Serratia ureilytica Using Squid Pen as Fermentation Substrate. Marine Biotechnology, 2011, 13, 451-461.	2.4	31
99	Purification and characterization of a novel alkali-stable $\hat{l}\pm$ -amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic. Process Biochemistry, 2011, 46, 745-750.	3.7	38
100	Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials. Carbohydrate Polymers, 2011, 84, 732-742.	10.2	85
101	Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnology, 2011, 28, 196-202.	4.4	66
102	Purification and Characterization of a Chitosanase and a Protease by Conversion of Shrimp Shell Wastes Fermented by <i>Serratia Marcescens Subsp. Sakuensis</i> TKU019. Journal of the Chinese Chemical Society, 2010, 57, 857-863.	1.4	13
103	Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation, 2010, 21, 321-333.	3.0	41
104	An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World Journal of Microbiology and Biotechnology, 2010, 26, 945-950.	3.6	60
105	In vitro antioxidant activity of liquor and semi-purified fractions from fermented squid pen biowaste by Serratia ureilytica TKU013. Food Chemistry, 2010, 119, 1380-1385.	8.2	23
106	Conversion of squid pen by Pseudomonas aeruginosa K187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers. Carbohydrate Research, 2010, 345, 880-885.	2.3	23
107	Conversion of squid pen by a novel strain Lactobacillus paracasei subsp. paracasei TKU010, and its application in antimicrobial and antioxidants activity. Journal of General and Applied Microbiology, 2010, 56, 481-489.	0.7	11
108	Pseudomonas taiwanensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2094-2098.	1.7	48

#	Article	IF	CITATIONS
109	Foreword. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 347-347.	1.5	O
110	Biodegradation and microbial community changes upon shrimp shell wastes amended in mangrove river sediment. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 473-477.	1.5	8
111	Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. Journal of Microbiology and Biotechnology, 2010, 20, 117-126.	2.1	12
112	Purification and characterization of chitinase from a new species strain Pseudomonas sp. TKU008. Journal of Microbiology and Biotechnology, 2010, 20, 1001-1005.	2.1	20
113	Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. Journal of Microbiology and Biotechnology, 2010, 20, 117-26.	2.1	4
114	Purification and Characterization of Protease and Chitinase from Bacillus cereus TKU006 and Conversion of Marine Wastes by These Enzymes. Marine Biotechnology, 2009, 11, 334-344.	2.4	74
115	Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 65-73.	3.0	31
116	Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal, 2009, 48, 111-117.	3.6	22
117	A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochemistry, 2009, 44, 70-76.	3.7	68
118	Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochemistry, 2009, 44, 854-861.	3.7	18
119	Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresource Technology, 2009, 100, 316-323.	9.6	36
120	Degradation of chitin and production of bioactive materials by bioconversion of squid pens. Carbohydrate Polymers, 2009, 78, 205-212.	10.2	14
121	Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydrate Research, 2009, 344, 979-984.	2.3	22
122	Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochemistry, 2008, 43, 132-138.	3.7	27
123	Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012. Bioresource Technology, 2008, 99, 3411-3417.	9.6	35
124	Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresource Technology, 2008, 99, 4386-4393.	9.6	92
125	Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresource Technology, 2008, 99, 5679-5686.	9.6	71
126	Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Bioresource Technology, 2008, 99, 5436-5443.	9.6	22

#	Article	IF	Citations
127	Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydrate Research, 2008, 343, 1171-1179.	2.3	71
128	Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydrate Research, 2008, 343, 1316-1323.	2.3	69
129	Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresource Technology, 2008, 99, 3700-3707.	9.6	54
130	Two novel surfactant-stable alkaline proteases from Vibrio fluvialis TKU005 and their applications. Enzyme and Microbial Technology, 2007, 40, 1213-1220.	3.2	19
131	The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochemistry, 2007, 42, 527-534.	3.7	91
132	Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Research, 2006, 341, 2507-2515.	2.3	136
133	Purification and characterization of a protease extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Enzyme and Microbial Technology, 2006, 38, 74-80.	3.2	40
134	An antifungal protease produced by Pseudomonas aeruginosa M-1001 with shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 2006, 39, 311-317.	3.2	21
135	A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for l²-chitin preparation. Enzyme and Microbial Technology, 2006, 39, 724-731.	3.2	81
136	Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source. Process Biochemistry, 2006, 41, 1594-1601.	3.7	40
137	Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry, 2006, 41, 1545-1552.	3.7	75
138	Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme and Microbial Technology, 2005, 36, 660-665.	3.2	56
139	Production of antifungal materials by bioconversion of shellfish chitin wastes fermented by Pseudomonas fluorescens K-188. Enzyme and Microbial Technology, 2005, 36, 49-56.	3.2	21
140	An Antifungal Chitinase Produced by Bacillus cereus with Shrimp and Crab Shell Powder as a Carbon Source. Current Microbiology, 2003, 47, 102-108.	2.2	82
141	Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydrate Polymers, 2003, 54, 425-430.	10.2	116
142	Microbial reclamation of fish processing wastes for the production of fish sauce. Enzyme and Microbial Technology, 2003, 33, 154-162.	3.2	32
143	Reversible immobilization of lysozyme via coupling to reversibly soluble polymer. Enzyme and Microbial Technology, 2003, 33, 643-649.	3.2	32
144	Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme and Microbial Technology, 2003, 33, 917-925.	3.2	65

#	Article	IF	Citations
145	Purification and Characterization of an Antimicrobial Chitinase Extracellularly Produced by Monascus purpureus CCRC 31499 in a Shrimp and Crab Shell Powder Medium. Journal of Agricultural and Food Chemistry, 2002, 50, 2249-2255.	5.2	71
146	Purification and Characterization of Two Antifungal Chitinases Extracellularly Produced byBacillus amyloliquefaciensV656 in a Shrimp and Crab Shell Powder Medium. Journal of Agricultural and Food Chemistry, 2002, 50, 2241-2248.	5.2	122
147	Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 2002, 31, 337-344.	3.2	48
148	Microbial reclamation of shellfish wastes for the production of chitinases. Enzyme and Microbial Technology, 2001, 28, 376-382.	3.2	74
149	Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastesâ~†. Enzyme and Microbial Technology, 2000, 26, 406-413.	3.2	223
150	Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme and Microbial Technology, 2000, 27, 3-10.	3.2	96
151	Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 1999, 25, 142-148.	3.2	48
152	Reversible Immobilization of Chitinase via Coupling to Reversibly Soluble Polymer. Enzyme and Microbial Technology, 1998, 22, 634-640.	3.2	39
153	Deproteinization of Shrimp and Crab Shell with the Protease of Pseudomonas Aeruginosa K-187. Enzyme and Microbial Technology, 1998, 22, 629-633.	3.2	83
154	Production, Purification and Characterization of the Hen Eggâ€White Lysozyme Inhibitor from <i>Enterobacter cloacae</i> Mâ€1002. Journal of the Chinese Chemical Society, 1997, 44, 349-355.	1.4	19
155	Purification and Properties of Three Xylanases from <i>Aspergillus aculeatus </i> Bioscience, Biotechnology and Biochemistry, 1995, 59, 538-540.	1.3	29
156	Inhibition of Lysozyme Activity by Acidic Polymers. Agricultural and Biological Chemistry, 1991, 55, 1401-1402.	0.3	0
157	Inhibition of lysozyme activity by acidic polymers Agricultural and Biological Chemistry, 1991, 55, 1401-1402.	0.3	1
158	Isolation and characterization of a novel hen egg white lysozyme inhibitor from Bacillus subtilis I-139 Agricultural and Biological Chemistry, 1990, 54, 1129-1136.	0.3	5
159	Lysozyme inhibitory activity of DNA from Bacillus subtilis I-139 Agricultural and Biological Chemistry, 1990, 54, 1289-1290.	0.3	1
160	Some properties of hen egg white lysozyme inhibitor from Bacillus subtilis I-139 Agricultural and Biological Chemistry, 1990, 54, 2447-2448.	0.3	2
161	Isolation and Characterization of a Novel Hen Egg White Lysozyme Inhibitor fromBacillus subtilisl-139. Agricultural and Biological Chemistry, 1990, 54, 1129-1136.	0.3	1
162	Lysozyme Inhibitory Activity of DNA from <i>Bacillus subtilis</i> li>l-139. Agricultural and Biological Chemistry, 1990, 54, 1289-1290.	0.3	0

#	Article	IF	CITATIONS
163	Some Properties of Hen Egg White Lysozyme Inhibitor from <i>Bacillus subtilis</i> I-139. Agricultural and Biological Chemistry, 1990, 54, 2447-2448.	0.3	0