
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3058080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mannose as a biomarker of coronary artery disease: Angiographic evidence and clinical significance. International Journal of Cardiology, 2022, 346, 86-92.	1.7	10
2	Tirzepatide as an Insulin Sensitizer. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1752-e1753.	3.6	5
3	Initial combination of metformin, sitagliptin, and empagliflozin in drugâ€naÃ⁻ve patients with type 2 diabetes: Safety and metabolic effects. Diabetes, Obesity and Metabolism, 2022, 24, 757-762.	4.4	2
4	Role of anatomical location, cellular phenotype and perfusion of adipose tissue in intermediary metabolism: A narrative review. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 43-50.	5.7	9
5	Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study. Metabolites, 2022, 12, 123.	2.9	5
6	Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. Journal of Clinical Investigation, 2022, 132, .	8.2	8
7	Fixedâ€ratio combination of insulin glargine plus lixisenatide (<scp>iClarLixi</scp>) improves ßâ€cell function in people with type 2 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 1159-1165.	4.4	5
8	Loss of the Incretin Effect in Type 2 Diabetes: A Systematic Review and Meta-analysis. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2092-2100.	3.6	7
9	SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends in Endocrinology and Metabolism, 2022, 33, 424-442.	7.1	23
10	Fasting Substrate Concentrations Predict Cardiovascular Outcomes in the CANagliflozin cardioVascular Assessment Study (CANVAS). Diabetes Care, 2022, 45, 1893-1899.	8.6	8
11	Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans. Scientific Reports, 2022, 12, .	3.3	5
12	Liver function markers predict cardiovascular and renal outcomes in the CANVAS Program. Cardiovascular Diabetology, 2022, 21, .	6.8	4
13	Differential metabolomic signatures of declining renal function in Types 1 and 2 diabetes. Nephrology Dialysis Transplantation, 2021, 36, 1859-1866.	0.7	4
14	Gamma-glutamyltransferase, arterial remodeling and prehypertension in a healthy population at low cardiometabolic risk. Journal of Human Hypertension, 2021, 35, 334-342.	2.2	0
15	Different mechanisms of GIP and GLP-1 action explain their different therapeutic efficacy in type 2 diabetes. Metabolism: Clinical and Experimental, 2021, 114, 154415.	3.4	11
16	Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 80-90.	3.6	5
17	A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes, 2021, 70, 338-346.	0.6	14
18	Insulin Resistance Is Associated With Enhanced Brain Glucose Uptake During Euglycemic Hyperinsulinemia: A Large-Scale PET Cohort. Diabetes Care, 2021, 44, 788-794.	8.6	31

#	Article	IF	CITATIONS
19	Effect of Dapagliflozin on Urine Metabolome in Patients with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1269-1283.	3.6	24
20	Clinical Translation of Cardiovascular Outcome Trials in Type 2 Diabetes: Is There More or Is There Less Than Meets the Eye?. Diabetes Care, 2021, 44, 641-646.	8.6	10
21	Effects of 6 weeks of treatment with dapagliflozin, a sodiumâ€glucose coâ€transporterâ€2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: A randomized, placeboâ€controlled, exploratory study. Diabetes, Obesity and Metabolism, 2021, 23, 1505-1517.	4.4	42
22	HDL Containing Apolipoprotein C-III is Associated with Insulin Sensitivity: A Multicenter Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2928-e2940.	3.6	12
23	Response to Comment on Ferrannini and Rosenstock. Clinical Translation of Cardiovascular Outcome Trials in Type 2 Diabetes: Is There More or Is There Less Than Meets the Eye? Diabetes Care 2021;44:641–646. Diabetes Care, 2021, 44, e155-e155.	8.6	0
24	New Insights on the Interactions Between Insulin Clearance and the Main Glucose Homeostasis Mechanisms. Diabetes Care, 2021, 44, 2115-2123.	8.6	16
25	Metabolomic correlates of coronary atherosclerosis, cardiovascular risk, both or neither. Results of the 2 × 2 phenotypic CAPIRE study. International Journal of Cardiology, 2021, 336, 14-21.	1.7	9
26	Efficacy and safety of sotagliflozin in patients with type <scp>2</scp> diabetes and severe renal impairment. Diabetes, Obesity and Metabolism, 2021, 23, 2632-2642.	4.4	30
27	Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes and Endocrinology,the, 2021, 9, 502-514.	11.4	53
28	Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovascular Diabetology, 2021, 20, 196.	6.8	28
29	Association of artificially sweetened and sugar-sweetened soft drinks with β-cell function, insulin sensitivity, and type 2 diabetes: the Maastricht Study. European Journal of Nutrition, 2020, 59, 1717-1727.	3.9	12
30	Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 393-403.	4.4	53
31	Hormoneâ€substrate changes with exenatide plus dapagliflozin versus each drug alone: The randomized, activeâ€controlled DURATIONâ€8 study. Diabetes, Obesity and Metabolism, 2020, 22, 99-106.	4.4	5
32	Anti-inflammatory properties of antidiabetic drugs: A "promised land―in the COVID-19 era?. Journal of Diabetes and Its Complications, 2020, 34, 107723.	2.3	58
33	Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes. Scientific Reports, 2020, 10, 11561.	3.3	8
34	Insulin enhances renal glucose excretion: relation to insulin sensitivity and sodium-glucose cotransport. BMJ Open Diabetes Research and Care, 2020, 8, e001178.	2.8	8
35	Effects of Sustained Treatment With Lixisenatide on Gastric Emptying and Postprandial Glucose Metabolism in Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care, 2020, 43, 1813-1821.	8.6	19
36	Brain substrate metabolism and ßâ€cell function in humans: A positron emission tomography study. Endocrinology, Diabetes and Metabolism, 2020, 3, e00136.	2.4	11

#	Article	IF	CITATIONS
37	Mechanisms of Sodium–Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics. Diabetes Care, 2020, 43, 2183-2189.	8.6	35
38	New American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) guidelines for the pharmacotherapy of type 2 diabetes: Placing them into a practicing physician's perspective. Metabolism: Clinical and Experimental, 2020, 107, 154218.	3.4	10
39	Fixedâ€dose combination of empagliflozin and linagliptin for the treatment of patients with type 2 diabetes mellitus: A systematic review and metaâ€analysis. Diabetes, Obesity and Metabolism, 2020, 22, 1001-1005.	4.4	7
40	Brain free fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric surgery: A positron emission tomography study. Diabetes, Obesity and Metabolism, 2020, 22, 1074-1082.	4.4	27
41	Coronary Artery Disease and Type 2 Diabetes: A Proteomic Study. Diabetes Care, 2020, 43, 843-851.	8.6	34
42	Glycemic Efficacy and Metabolic Consequences of an Empagliflozin Add-on versus Conventional Dose-Increasing Strategy in Patients with Type 2 Diabetes Inadequately Controlled by Metformin and Sulfonylurea. Endocrinology and Metabolism, 2020, 35, 329-338.	3.0	7
43	SGLT2 inhibition versus sulfonylurea treatment effects on electrolyte and acid–base balance: secondary analysis of a clinical trial reaching glycemic equipoise: Tubular effects of SGLT2 inhibition in Type 2 diabetes. Clinical Science, 2020, 134, 3107-3118.	4.3	19
44	Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at followâ€up. Diabetes, Obesity and Metabolism, 2019, 21, 218-226.	4.4	36
45	Renal hemodynamics and fatty acid uptake: effects of obesity and weight loss. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E871-E878.	3.5	25
46	Empagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes and Left Ventricular Hypertrophy: A Subanalysis of the EMPA-REG OUTCOME Trial. Diabetes Care, 2019, 42, e42-e44.	8.6	25
47	International Consensus on Risk Management of Diabetic Ketoacidosis in Patients With Type 1 Diabetes Treated With Sodium–Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care, 2019, 42, 1147-1154.	8.6	249
48	Quantification of d-mannose in plasma: Development and validation of a reliable and accurate HPLC-MS-MS method. Clinica Chimica Acta, 2019, 493, 31-35.	1.1	10
49	Spontaneous ketonuria and risk of incident diabetes: a 12Âyear prospective study. Diabetologia, 2019, 62, 779-788.	6.3	11
50	The diabetes pandemic and associated infections: suggestions for clinical microbiology. Reviews in Medical Microbiology, 2019, 30, 1-17.	0.9	98
51	Prospective associations of dietary carbohydrate, fat, and protein intake with β-cell function in the CODAM study. European Journal of Nutrition, 2019, 58, 597-608.	3.9	7
52	Nocturnal hypertension in diabetes: Potential target of sodium/glucose cotransporter 2 (<scp>SGLT</scp> 2) inhibition. Journal of Clinical Hypertension, 2018, 20, 424-428.	2.0	17
53	Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index. Diabetologia, 2018, 61, 1135-1141.	6.3	45
54	Overview of Glucose Homeostasis. Endocrinology, 2018, , 1-23.	0.1	0

#	Article	IF	CITATIONS
55	Sleeping oxygen saturation, rapid eye movement sleep, and the adaptation of postprandial metabolic function in insulin sensitive and resistant individuals without diabetes. Physiology and Behavior, 2018, 191, 123-130.	2.1	1
56	Hypertension and Diabetes Mellitus. Hypertension, 2018, 71, 422-428.	2.7	179
57	Elevated Plasma Levels of 3-Hydroxyisobutyric Acid Are Associated With Incident Type 2 Diabetes. EBioMedicine, 2018, 27, 151-155.	6.1	53
58	High density lipoprotein with apolipoprotein C-III is associated with carotid intima-media thickness among generally healthy individuals. Atherosclerosis, 2018, 269, 92-99.	0.8	11
59	Slope of change in HbA _{1c} from baseline with empagliflozin compared with sitagliptin or glimepiride in patients with type 2 diabetes. Endocrinology, Diabetes and Metabolism, 2018, 1, e00016.	2.4	12
60	Insulin resistance and cardiovascular outcomes in the <scp>ORIGIN</scp> trial. Diabetes, Obesity and Metabolism, 2018, 20, 564-570.	4.4	10
61	Defective Amplifying Pathway of β-Cell Secretory Response to Glucose in Type 2 Diabetes: Integrated Modeling of In Vitro and In Vivo Evidence. Diabetes, 2018, 67, 496-506.	0.6	20
62	How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care, 2018, 41, 356-363.	8.6	534
63	Overview of Glucose Homeostasis. Endocrinology, 2018, , 1-22.	0.1	0
64	Metabolomic Profile Predicts Development of Microalbuminuria in Individuals with Type 1 Diabetes. Scientific Reports, 2018, 8, 13853.	3.3	50
65	Adipose tissue and skeletal muscle insulin-mediated glucose uptake in insulin resistance: role of blood flow and diabetes. American Journal of Clinical Nutrition, 2018, 108, 749-758.	4.7	43
66	microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function. Molecular Metabolism, 2018, 17, 49-60.	6.5	29
67	Triglycerideâ€rich very lowâ€density lipoproteins (VLDL) are independently associated with insulin secretion in a multiethnic cohort of adolescents. Diabetes, Obesity and Metabolism, 2018, 20, 2905-2910.	4.4	16
68	Effects of acute NEFA manipulation on incretin-induced insulin secretion in participants with and without type 2 diabetes. Diabetologia, 2018, 61, 1829-1837.	6.3	13
69	Short Course of Insulin Treatment versus Metformin in Newly Diagnosed Patients with Type 2 Diabetes. Journal of Clinical Medicine, 2018, 7, 235.	2.4	4
70	Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight, 2018, 3, .	5.0	87
71	Insulin resistance and normal thyroid hormone levels: prospective study and metabolomic analysis. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E429-E436.	3.5	29
72	Cardiovascular safety of insulin: Between realâ€world data and reality. Diabetes, Obesity and Metabolism, 2017, 19, 1201-1204.	4.4	8

#	Article	IF	CITATIONS
73	Fatty acid uptake and blood flow in adipose tissue compartments of morbidly obese subjects with or without type 2 diabetes: effects of bariatric surgery. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E175-E182.	3.5	26
74	Sodiumâ€glucose coâ€ŧransporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2017, 19, 1289-1294.	4.4	66
75	Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metabolism, 2017, 26, 27-38.	16.2	233
76	Effect of exenatide on postprandial glucose fluxes, lipolysis, and ßâ€cell function in nonâ€diabetic, morbidly obese patients. Diabetes, Obesity and Metabolism, 2017, 19, 412-420.	4.4	15
77	Mechanisms linking empagliflozin to cardiovascular and renal protection. International Journal of Cardiology, 2017, 241, 450-456.	1.7	36
78	Renal Handling of Ketones in Response to Sodium–Glucose Cotransporter 2 Inhibition in Patients With Type 2 Diabetes. Diabetes Care, 2017, 40, 771-776.	8.6	127
79	Discriminatory ability of simple OGTT-based beta cell function indices for prediction of prediabetes and type 2 diabetes: the CODAM study. Diabetologia, 2017, 60, 432-441.	6.3	36
80	SGLT inhibition in T1DM — definite benefit with manageable risk. Nature Reviews Endocrinology, 2017, 13, 698-699.	9.6	6
81	Diabetes Research and Care Through the Ages. Diabetes Care, 2017, 40, 1302-1313.	8.6	11
82	Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Scientific Reports, 2017, 7, 9007.	3.3	62
83	Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease. Cell Metabolism, 2017, 26, 281-283.	16.2	85
84	GLP-1 response to sequential mixed meals: influence of insulin resistance. Clinical Science, 2017, 131, 2901-2910.	4.3	9
85	Associations of Dietary Glucose, Fructose, and Sucrose with β-Cell Function, Insulin Sensitivity, and Type 2 Diabetes in the Maastricht Study. Nutrients, 2017, 9, 380.	4.1	15
86	Response to Comment on Ferrannini et al. CV Protection in the EMPA-REG OUTCOME Trial: A "Thrifty Substrate―Hypothesis. Diabetes Care 2016;39:1108–1114. Diabetes Care, 2016, 39, e226-e226.	8.6	4
87	Response to Comment on Ferrannini et al. Diabetes Care 2016;39:1108–1114. Comment on Mudaliar et al. Diabetes Care 2016;39:1115–1122. Diabetes Care, 2016, 39, e196-e197.	8.6	3
88	α-Hydroxybutyric Acid Is a Selective Metabolite Biomarker of Impaired Glucose Tolerance. Diabetes Care, 2016, 39, 988-995.	8.6	93
89	Update and Next Steps for Real-World Translation of Interventions for Type 2 Diabetes Prevention: Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care, 2016, 39, 1186-1201.	8.6	113
90	Risk Factors for Spontaneously Self-Reported Postprandial Hypoglycemia After Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3600-3607.	3.6	27

#	Article	IF	CITATIONS
91	Impact of a mild decrease in fasting plasma glucose on β-cell function in healthy subjects and patients with type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E919-E924.	3.5	5
92	Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell Metabolism, 2016, 24, 172-184.	16.2	133
93	CV Protection in the EMPA-REG OUTCOME Trial: A "Thrifty Substrate―Hypothesis. Diabetes Care, 2016, 39, 1108-1114.	8.6	774
94	Shift to Fatty Substrate Utilization in Response to Sodium–Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes, 2016, 65, 1190-1195.	0.6	498
95	A "systems medicine―approach to the study of non-alcoholic fatty liver disease. Digestive and Liver Disease, 2016, 48, 333-342.	0.9	56
96	Metabolic consequences of acute and chronic empagliflozin administration in treatment-naive and metformin pretreated patients with type 2 diabetes. Diabetologia, 2016, 59, 700-708.	6.3	21
97	Prediction of Declining Renal Function and Albuminuria in Patients With Type 2 Diabetes by Metabolomics. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 696-704.	3.6	62
98	Regulation of Intermediary Metabolism During Fasting and Feeding. , 2016, , 598-626.e3.		3
99	Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015, 1, 15019.	30.5	1,308
100	Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. European Heart Journal, 2015, 36, 2288-2296.	2.2	210
101	Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion. Diabetes, 2015, 64, 3377-3385.	0.6	66
102	Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia, 2015, 58, 429-442.	6.3	598
103	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
104	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
105	Identifying glucose thresholds for incident diabetes by physiological analysis: a mathematical solution. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R590-R596.	1.8	5
106	Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care, 2015, 38, 1730-1735.	8.6	276
107	Influence of endogenous NEFA on beta cell function in humans. Diabetologia, 2015, 58, 2344-2351.	6.3	27
108	Adaptation of β-Cell and Endothelial Function to Carbohydrate Loading: Influence of Insulin Resistance. Diabetes, 2015, 64, 2550-2559.	0.6	10

#	Article	IF	CITATIONS
109	A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1855-1862.	3.6	24
110	Of Microbes and Men: Figure 1. Diabetes Care, 2015, 38, 1817-1819.	8.6	3
111	Mechanisms through which a small protein and lipid preload improves glucose tolerance. Diabetologia, 2015, 58, 2503-2512.	6.3	41
112	Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern With SGLT2 Inhibitors. Diabetes Care, 2015, 38, 1638-1642.	8.6	513
113	The past 10 years—new hormones, new functions, new endocrine organs. Nature Reviews Endocrinology, 2015, 11, 681-686.	9.6	12
114	Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2015, 38, 140-149.	8.6	2,326
115	A Novel Test for IGT Utilizing Metabolite Markers of Glucose Tolerance. Journal of Diabetes Science and Technology, 2015, 9, 69-76.	2.2	39
116	Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. Journal of Clinical Investigation, 2014, 124, 499-508.	8.2	907
117	Hepatitis C virus infection and type 1 and type 2 diabetes mellitus. World Journal of Diabetes, 2014, 5, 586.	3.5	83
118	Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia, 2014, 57, 891-901.	6.3	96
119	Residual macrovascular risk in 2013: what have we learned?. Cardiovascular Diabetology, 2014, 13, 26.	6.8	149
120	Chemokine (C–X–C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews, 2014, 13, 272-280.	5.8	448
121	Extra-ocular muscle cells from patients with Graves' ophthalmopathy secrete α (CXCL10) and β (CCL2) chemokines under the influence of cytokines that are modulated by PPARγ. Autoimmunity Reviews, 2014, 13, 1160-1166.	5.8	27
122	β-Cell Function, Incretin Effect, and Incretin Hormones in Obese Youth Along the Span of Glucose Tolerance From Normal to Prediabetes to Type 2 Diabetes. Diabetes, 2014, 63, 3846-3855.	0.6	79
123	β-Cell function in type 2 diabetes. Metabolism: Clinical and Experimental, 2014, 63, 1217-1227.	3.4	111
124	The threshold shift paradigm of obesity: evidence from surgically induced weight loss. American Journal of Clinical Nutrition, 2014, 100, 996-1002.	4.7	27
125	The Target of Metformin in Type 2 Diabetes. New England Journal of Medicine, 2014, 371, 1547-1548.	27.0	113
126	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818

#	Article	IF	CITATIONS
127	Altered pattern of the incretin effect as assessed by modelling in individuals with glucose tolerance ranging from normal to diabetic. Diabetologia, 2014, 57, 1199-1203.	6.3	46
128	CXCR3, CXCL10 and type 1 diabetes. Cytokine and Growth Factor Reviews, 2014, 25, 57-65.	7.2	99
129	Definition of intervention points in prediabetes. Lancet Diabetes and Endocrinology,the, 2014, 2, 667-675.	11.4	52
130	Common Genetic Variants Highlight the Role of Insulin Resistance and Body Fat Distribution in Type 2 Diabetes, Independent of Obesity. Diabetes, 2014, 63, 4378-4387.	0.6	153
131	Personalized Management of Hyperglycemia in Type 2 Diabetes: Reflections from a Diabetes Care Editors' Expert Forum. Diabetes Care, 2013, 36, 1779-1788.	8.6	130
132	Active- and placebo-controlled dose-finding study to assess the efficacy, safety, and tolerability of multiple doses of ipragliflozin in patients with type 2 diabetes mellitus. Journal of Diabetes and Its Complications, 2013, 27, 268-273.	2.3	76
133	Antibodies recognizing specific Mycobacterium avium subsp. paratuberculosis's MAP3738c protein in type 1 diabetes mellitus children are associated with serum Th1 (CXCL10) chemokine. Cytokine, 2013, 61, 337-339.	3.2	17
134	Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance. Diabetes, 2013, 62, 1730-1737.	0.6	307
135	Parental history of type 2 diabetes, TCF7L2 variant and lower insulin secretion are associated with incident hypertension. Data from the DESIR and RISC cohorts. Diabetologia, 2013, 56, 2414-2423.	6.3	22
136	Biliopancreatic Diversion in Nonobese Patients With Type 2 Diabetes: Impact and Mechanisms. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2765-2773.	3.6	57
137	Renal Glucose Handling. Diabetes Care, 2013, 36, 1260-1265.	8.6	70
138	Insulin Sensitivity and Carotid Intima-Media Thickness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1409-1417.	2.4	47
139	Long-Term Safety and Efficacy of Empagliflozin, Sitagliptin, and Metformin. Diabetes Care, 2013, 36, 4015-4021.	8.6	187
140	Long-Term Effects of Bariatric Surgery on Meal Disposal and β-Cell Function in Diabetic and Nondiabetic Patients. Diabetes, 2013, 62, 3709-3717.	0.6	98
141	Influence of Apolipoproteins on the Association Between Lipids and Insulin Sensitivity. Diabetes Care, 2013, 36, 4125-4131.	8.6	19
142	Age, Renal Dysfunction, Cardiovascular Disease, and Antihyperglycemic Treatment in Type 2 Diabetes Mellitus: Findings from the Renal Insufficiency and Cardiovascular Events Italian Multicenter Study. Journal of the American Geriatrics Society, 2013, 61, 1253-1261.	2.6	65
143	Mechanisms of the Incretin Effect in Subjects with Normal Clucose Tolerance and Patients with Type 2 Diabetes. PLoS ONE, 2013, 8, e73154.	2.5	38
144	Sweetened beverages intake, hyperuricemia and metabolic syndrome. The Mexico City Diabetes Study. Salud Publica De Mexico, 2013, 55, 557.	0.4	10

#	Article	IF	CITATIONS
145	Diabetes and hypertension: the bad companions. Lancet, The, 2012, 380, 601-610.	13.7	498
146	SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nature Reviews Endocrinology, 2012, 8, 495-502.	9.6	364
147	Estimation of prehepatic insulin secretion: comparison between standardized C-peptide and insulin kinetic models. Metabolism: Clinical and Experimental, 2012, 61, 434-443.	3.4	18
148	Mechanisms for the Antihyperglycemic Effect of Sitagliptin in Patients with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 2818-2826.	3.6	91
149	Variable modulation by cytokines and thiazolidinediones of the prototype Th1 chemokine CXCL10 in anaplastic thyroid cancer. Cytokine, 2012, 59, 218-222.	3.2	26
150	Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach. Diabetes Care, 2012, 35, 1364-1379.	8.6	3,077
151	Physiology of Glucose Homeostasis and Insulin Therapy in Type 1 and Type 2 Diabetes. Endocrinology and Metabolism Clinics of North America, 2012, 41, 25-39.	3.2	21
152	Pathophysiology: Loss of β-Cell Function. , 2012, , 11-29.		0
153	Pathophysiology ofÂPrediabetes. Medical Clinics of North America, 2011, 95, 327-339.	2.5	124
154	Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine, 2011, 55, 288-293.	3.2	60
155	Influence of Hyperinsulinemia and Insulin Resistance on In Vivo β-Cell Function. Diabetes, 2011, 60, 3141-3147.	0.6	43
156	Cytokines (interferon-γ and tumor necrosis factor–α)-induced nuclear factor–κB activation and chemokine (C-X-C motif) ligand 10 release in Graves disease and ophthalmopathy are modulated by pioglitazone. Metabolism: Clinical and Experimental, 2011, 60, 277-283.	3.4	34
157	Peroxisome proliferator-activated receptor \hat{I}_{\pm} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease. Experimental Cell Research, 2011, 317, 1527-1533.	2.6	23
158	Improvement in Insulin Sensitivity and Î'-Cell Function Following Ileal Interposition with Sleeve Gastrectomy in Type 2 Diabetic Patients: Potential Mechanisms. Journal of Gastrointestinal Surgery, 2011, 15, 1344-1353.	1.7	50
159	Increase of Circulating CXCL9 and CXCL11 Associated with Euthyroid or Subclinically Hypothyroid Autoimmune Thyroiditis. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1859-1863.	3.6	59
160	Body Weight, Not Insulin Sensitivity or Secretion, May Predict Spontaneous Weight Changes in Nondiabetic and Prediabetic Subjects. Diabetes, 2011, 60, 1938-1945.	0.6	20
161	Learning From Glycosuria. Diabetes, 2011, 60, 695-696.	0.6	35
162	Progression to Diabetes in Relatives of Type 1 Diabetic Patients: Mechanisms and Mode of Onset. Diabetes, 2010, 59, 679-685.	0.6	120

#	Article	lF	CITATIONS
163	CXCL9 and CXCL11 Chemokines Modulation by Peroxisome Proliferator-Activated Receptor-α Agonists Secretion in Graves' and Normal Thyrocytes. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E413-E420.	3.6	61
164	α-Hydroxybutyrate Is an Early Biomarker of Insulin Resistance and Glucose Intolerance in a Nondiabetic Population. PLoS ONE, 2010, 5, e10883.	2.5	594
165	Fatty Acid Metabolism in the Liver, Measured by Positron Emission Tomography, Is Increased in Obese Individuals. Gastroenterology, 2010, 139, 846-856.e6.	1.3	144
166	Dapagliflozin Monotherapy in Type 2 Diabetic Patients With Inadequate Glycemic Control by Diet and Exercise. Diabetes Care, 2010, 33, 2217-2224.	8.6	628
167	The Stunned Î ² Cell: A Brief History. Cell Metabolism, 2010, 11, 349-352.	16.2	154
168	Regulation of Intermediatory Metabolism During Fasting and Feeding. , 2010, , 673-698.		5
169	Monokine Induced by Interferon γ (IFNγ) (CXCL9) and IFNγ Inducible T-Cell α-Chemoattractant (CXCL11) Involvement in Graves' Disease and Ophthalmopathy: Modulation by Peroxisome Proliferator-Activated Receptor-γ Agonists. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1803-1809.	3.6	91
170	Impact of Different Bariatric Surgical Procedures on Insulin Action and β-Cell Function in Type 2 Diabetes. Diabetes Care, 2009, 32, 514-520.	8.6	160
171	Decreased whole body lipolysis as a mechanism of the lipid-lowering effect of pioglitazone in type 2 diabetic patients. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E225-E230.	3.5	27
172	Redefining the Diagnosis of Diabetes Using Glycated Hemoglobin. Diabetes Care, 2009, 32, 1344-1345.	8.6	33
173	Improved tolerance to sequential glucose loading (Staub-Traugott effect): size and mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E532-E537.	3.5	74
174	Insulin resistance versus β-cell dysfunction in the pathogenesis of type 2 diabetes. Current Diabetes Reports, 2009, 9, 188-189.	4.2	4
175	Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clinical Endocrinology, 2009, 70, 946-953.	2.4	63
176	CXCL10 and CCL2 Chemokine Serum Levels in Patients With Hepatitis C Associated With Autoimmune Thyroiditis. Journal of Interferon and Cytokine Research, 2009, 29, 345-352.	1.2	12
177	Metabolic characteristics of prehypertension: role of classification criteria and gender. Journal of Hypertension, 2009, 27, 2394-2402.	0.5	27
178	Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clinical Endocrinology, 2008, 69, 148-152.	2.4	63
179	α-Chemokine CXCL10 and β-chemokine CCL2 serum levels in patients with hepatitis C–associated cryoglobulinemia in the presence or absence of autoimmune thyroiditis. Metabolism: Clinical and Experimental, 2008, 57, 1270-1277.	3.4	44
180	Quantification of liver perfusion with [150]H2O-PET and its relationship with glucose metabolism and substrate levels. Journal of Hepatology, 2008, 48, 974-982.	3.7	16

#	Article	IF	CITATIONS
181	High values of CXCL10 serum levels in patients with hepatitis C associated mixed cryoglobulinemia in presence or absence of autoimmune thyroiditis. Cytokine, 2008, 42, 137-143.	3.2	56
182	Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. European Journal of Endocrinology, 2008, 159, 283-291.	3.7	55
183	Separate Impact of Obesity and Glucose Tolerance on the Incretin Effect in Normal Subjects and Type 2 Diabetic Patients. Diabetes, 2008, 57, 1340-1348.	0.6	353
184	High Values of CXCL10 Serum Levels in Mixed Cryoglobulinemia Associated With Hepatitis C Infection. American Journal of Gastroenterology, 2008, 103, 2488-2494.	0.4	61
185	Early Hypertension Is Associated With Reduced Regional Cardiac Function, Insulin Resistance, Epicardial, and Visceral Fat. Hypertension, 2008, 51, 282-288.	2.7	107
186	Recurrence of Cardiovascular Events in Patients With Type 2 Diabetes. Diabetes Care, 2008, 31, 2154-2159.	8.6	71
187	High values of alpha (CXCL10) and beta (CCL2) circulating chemokines in patients with psoriatic arthritis, in presence or absence of autoimmune thyroiditis. Autoimmunity, 2008, 41, 537-542.	2.6	41
188	Effect of Pioglitazone on Cardiovascular Outcome in Diabetes and Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2008, 19, 182-187.	6.1	135
189	Primary Prevention of Cardiovascular Disease and Type 2 Diabetes in Patients at Metabolic Risk: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3671-3689.	3.6	164
190	Th1 and Th2 chemokine serum levels in systemic sclerosis in the presence or absence of autoimmune thyroiditis. Journal of Rheumatology, 2008, 35, 1809-11.	2.0	27
191	Common Variants of the Novel Type 2 Diabetes Genes <i>CDKAL1</i> and <i>HHEX/IDE</i> Are Associated With Decreased Pancreatic β-Cell Function. Diabetes, 2007, 56, 3101-3104.	0.6	226
192	Â-Cell Function in Severely Obese Type 2 Diabetic Patients: Long-term effects of bariatric surgery. Diabetes Care, 2007, 30, 1002-1004.	8.6	49
193	Thiazolidinediones improve β-cell function in type 2 diabetic patients. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E871-E883.	3.5	167
194	Insulin Resistance, Insulin Response, and Obesity as Indicators of Metabolic Risk. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2885-2892.	3.6	149
195	Incidence and Risk Factors for Stroke in Type 2 Diabetic Patients. Stroke, 2007, 38, 1154-1160.	2.0	98
196	Iodine-131 Given for Therapeutic Purposes Modulates Differently Interferon-γ-Inducible α-Chemokine CXCL10 Serum Levels in Patients with Active Graves' Disease or Toxic Nodular Goiter. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1485-1490.	3.6	67
197	Metabolic Syndrome: A Solution in Search of a Problem. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 396-398.	3.6	68
198	Incidence of Coronary Heart Disease in Type 2 Diabetic Men and Women. Diabetes Care, 2007, 30, 1241-1247.	8.6	144

#	Article	IF	CITATIONS
199	Thyroid Cancer in HCV-Related Chronic Hepatitis Patients: A Case-Control Study. Thyroid, 2007, 17, 447-451.	4.5	66
200	Quantification of Liver Glucose Metabolism by Positron Emission Tomography: Validation Study in Pigs. Gastroenterology, 2007, 132, 531-542.	1.3	61
201	Relationship Between Hepatic/Visceral Fat and Hepatic Insulin Resistance in Nondiabetic and Type 2 Diabetic Subjects. Gastroenterology, 2007, 133, 496-506.	1.3	500
202	Is insulin resistance atherogenic? A review of the evidence. Atherosclerosis Supplements, 2006, 7, 5-10.	1.2	38
203	Is insulin resistance the cause of the metabolic syndrome?. Annals of Medicine, 2006, 38, 42-51.	3.8	56
204	Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary: The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). European Heart Journal, 2006, 28, 88-136.	2.2	1,144
205	Increase of CXC chemokine CXCL10 and CC chemokine CCL2 serum levels in normal ageing. Cytokine, 2006, 34, 32-38.	3.2	73
206	Increase of interferonâ€Î³â€inducible CXC chemokine CXCL10 serum levels in patients with active Graves' disease, and modulation by methimazole therapy. Clinical Endocrinology, 2006, 64, 189-195.	2.4	67
207	Fastingâ€based Estimates of Insulin Sensitivity in Overweight and Obesity: A Critical Appraisal. Obesity, 2006, 14, 1250-1256.	3.0	29
208	Interferon-γ-Inducible α-Chemokine CXCL10 Involvement in Graves' Ophthalmopathy: Modulation by Peroxisome Proliferator-Activated Receptor-γ Agonists. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 614-620.	3.6	144
209	Impact of incretin hormones on β-cell function in subjects with normal or impaired glucose tolerance. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1144-E1150.	3.5	76
210	Increased serum CXCL10 in Graves' disease or autoimmune thyroiditis is not associated with hyper- or hypothyroidism per se, but is specifically sustained by the autoimmune, inflammatory process. European Journal of Endocrinology, 2006, 154, 651-658.	3.7	70
211	The Effect of Pioglitazone on the Liver: Role of adiponectin. Diabetes Care, 2006, 29, 2275-2281.	8.6	76
212	Clustering of Insulin Resistance With Vascular Dysfunction and Low-Grade Inflammation in Type 2 Diabetes. Diabetes, 2006, 55, 1133-1140.	0.6	170
213	18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. Journal of Nuclear Medicine, 2006, 47, 1016-22.	5.0	33
214	Predictors of weight loss and reversal of comorbidities in malabsorptive bariatric surgery. American Journal of Clinical Nutrition, 2005, 81, 1292-1297.	4.7	59
215	Identification of Individuals With Insulin Resistance Using Routine Clinical Measurements. Diabetes, 2005, 54, 333-339.	0.6	324
216	Increase of interferon-γ inducible α chemokine CXCL10 but not β chemokine CCL2 serum levels in chronic autoimmune thyroiditis. European Journal of Endocrinology, 2005, 152, 171-177.	3.7	82

#	Article	IF	CITATIONS
217	β-Cell Function in Subjects Spanning the Range from Normal Glucose Tolerance to Overt Diabetes: A New Analysis. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 493-500.	3.6	470
218	Rosiglitazone Treatment Increases Subcutaneous Adipose Tissue Glucose Uptake in Parallel with Perfusion in Patients with Type 2 Diabetes: A Double-Blind, Randomized Study with Metformin. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6523-6528.	3.6	31
219	Increased Fat Mass Compensates for Insulin Resistance in Abdominal Obesity and Type 2 Diabetes. Diabetes, 2005, 54, 2720-2726.	0.6	99
220	Hepatitis C Virus Infection: Evidence for an association with type 2 diabetes. Diabetes Care, 2005, 28, 2548-2550.	8.6	114
221	Â-Cell Function in Morbidly Obese Subjects During Free Living: Long-Term Effects of Weight Loss. Diabetes, 2005, 54, 2382-2389.	0.6	88
222	Â-Cell Function in Mild Type 2 Diabetic Patients: Effects of 6-month glucose lowering with nateglinide. Diabetes Care, 2005, 28, 1132-1138.	8.6	25
223	Differential effect of weight loss on insulin resistance in surgically treated obese patients. American Journal of Medicine, 2005, 118, 51-57.	1.5	123
224	Separate Contribution of Diabetes, Total Fat Mass, and Fat Topography to Glucose Production, Gluconeogenesis, and Glycogenolysis. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3914-3921.	3.6	103
225	Defective Liver Disposal of Free Fatty Acids in Patients with Impaired Glucose Tolerance. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3496-3502.	3.6	36
226	High Levels of Circulating CXC Chemokine Ligand 10 Are Associated with Chronic Autoimmune Thyroiditis and Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5496-5499.	3.6	108
227	Visceral Fat in Hypertension. Hypertension, 2004, 44, 127-133.	2.7	239
228	Mode of Onset of Type 2 Diabetes from Normal or Impaired Glucose Tolerance. Diabetes, 2004, 53, 160-165.	0.6	129
229	Vascular Effects of Improving Metabolic Control With Metformin or Rosiglitazone in Type 2 Diabetes. Diabetes Care, 2004, 27, 1349-1357.	8.6	170
230	Beta-Cell Function in Obesity: Effects of Weight Loss. Diabetes, 2004, 53, S26-S33.	0.6	114
231	Effect of PPAR-Â Activation and Inhibition on Glucose-Stimulated Insulin Release in INS-1e Cells. Diabetes, 2004, 53, S79-S83.	0.6	35
232	Liver uptake of free fatty acids in vivo in humans as determined with 14(R , S)-[18 F]fluoro-6-thia-heptadecanoic acid and PET. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 1160-1164.	6.4	22
233	Insulin-Mediated Hepatic Clucose Uptake Is Impaired in Type 2 Diabetes: Evidence for a Relationship with Glycemic Control. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2055-2060.	3.6	73
234	Influence of Ethnicity and Familial Diabetes on Glucose Tolerance and Insulin Action: A Physiological Analysis. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3251-3257.	3.6	39

#	Article	IF	CITATIONS
235	Effect of Acute Hyperglycemia on Insulin Secretion in Humans. Diabetes, 2002, 51, S130-S133.	0.6	77
236	Independent Association of Type 2 Diabetes and Coronary Artery Disease With Myocardial Insulin Resistance. Diabetes, 2002, 51, 3020-3024.	0.6	144
237	Insulin Resistance in Morbid Obesity: Reversal With Intramyocellular Fat Depletion. Diabetes, 2002, 51, 144-151.	0.6	464
238	Meal and oral glucose tests for assessment of β-cell function: modeling analysis in normal subjects. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1159-E1166.	3.5	267
239	Assessing Insulin Secretion by Modeling in Multiple-Meal Tests: Role of Potentiation. Diabetes, 2002, 51, S221-S226.	0.6	209
240	Regional myocardial blood flow and glucose utilization during fasting and physiological hyperinsulinemia in humans. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1163-E1171.	3.5	48
241	Hyperinsulinemia and Autonomic Nervous System Dysfunction in Obesity. Circulation, 2001, 103, 513-519.	1.6	209
242	Dose-response characteristics of insulin action on glucose metabolism: a non-steady-state approach. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E794-E801.	3.5	82
243	Insulin prolongs the QTc interval in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2022-R2025.	1.8	70
244	Effect of Vitamin C on Forearm Blood Flow and Glucose Metabolism in Essential Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2401-2406.	2.4	23
245	Independent Influence of Age on Basal Insulin Secretion in Nondiabetic Humans. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 863-868.	3.6	199
246	Independent Influence of Age on Basal Insulin Secretion in Nondiabetic Humans. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 863-868.	3.6	43
247	Autonomic and Hemodynamic Responses to Insulin in Lean and Obese Humans ¹ . Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2084-2090.	3.6	105
248	Insulin Resistance versus Insulin Deficiency in Non-Insulin-Dependent Diabetes Mellitus: Problems and Prospects. Endocrine Reviews, 1998, 19, 477-490.	20.1	371
249	How to measure insulin sensitivity. Journal of Hypertension, 1998, 16, 895-906.	0.5	405
250	Metabolic and Cardiovascular Assessment in Moderate Obesity: Effect of Weight Loss. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2937-2943.	3.6	51
251	Insulin resistance is central to the burden of diabetes. , 1997, 13, 81-86.		56
252	Insulin resistance is central to the burden of diabetes. Diabetes/metabolism Reviews, 1997, 13, 81-86.	0.3	3

#	Article	IF	CITATIONS
253	Insulin Sensitivity, Vascular Reactivity, and Clamp-Induced Vasodilatation in Essential Hypertension. Circulation, 1997, 96, 849-855.	1.6	57
254	Insulin Resistance, Hyperinsulinemia, and Blood Pressure. Hypertension, 1997, 30, 1144-1149.	2.7	246
255	Metabolic and Cardiovascular Assessment in Moderate Obesity: Effect of Weight Loss. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2937-2943.	3.6	22
256	Effect of insulin on renal sodium and uric acid handling in essential hypertension. American Journal of Hypertension, 1996, 9, 746-752.	2.0	248
257	In vivo effect of insulin on intracellular calcium concentrations: Relation to insulin resistance. Metabolism: Clinical and Experimental, 1996, 45, 1402-1407.	3.4	36
258	Effect of Insulin on Acetylcholine-Induced Vasodilation in Normotensive Subjects and Patients With Essential Hypertension. Circulation, 1995, 92, 2911-2918.	1.6	147
259	Insulin sensitivity in familial hypercholesterolemia. Metabolism: Clinical and Experimental, 1993, 42, 1359-1364.	3.4	23
260	Insulin Resistance of Stress: Sites and Mechanisms. Clinical Science, 1993, 85, 525-535.	4.3	53
261	The haemodynamics of obesity: a theoretical analysis. Journal of Hypertension, 1992, 10, 1417-1423.	0.5	42
262	Coronary hemodynamics and myocardial metabolism in patients with syndrome X: Response to pacing stress. Journal of the American College of Cardiology, 1991, 17, 1461-1470.	2.8	205
263	The Role of Free Fatty Acid Metabolism in the Pathogenesis of Insulin Resistance in Obesity and Noninsulin-Dependent Diabetes Mellitus*. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 96-107.	3.6	304
264	Hepatic glucose production in insulinâ€resistant states. Diabetes/metabolism Reviews, 1989, 5, 711-726.	0.3	62
265	Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: Contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism: Clinical and Experimental, 1989, 38, 387-395.	3.4	492
266	Differential effects of insulin and hyperglycemia on intracellular glucose disposition in humans. Metabolism: Clinical and Experimental, 1989, 38, 459-465.	3.4	30
267	Metabolic basis of obesity and noninsulinâ€dependent diabetes mellitus. Diabetes/metabolism Reviews, 1988, 4, 727-747.	0.3	117
268	The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism: Clinical and Experimental, 1988, 37, 79-85.	3.4	268
269	The theoretical bases of indirect calorimetry: A review. Metabolism: Clinical and Experimental, 1988, 37, 287-301.	3.4	1,425
270	Inadvertent Catheterization of the Internal Thoracic Vein Mimicking Pulmonary Embolism: A Case Report. Journal of Parenteral and Enteral Nutrition, 1988, 12, 221-222.	2.6	12

#	Article	IF	CITATIONS
271	The kinetics of insulin in man. I. General aspects. Diabetes/metabolism Reviews, 1987, 3, 335-363.	0.3	75
272	The kinetics of insulin in man. II. Role of the liver. Diabetes/metabolism Reviews, 1987, 3, 365-397.	0.3	98
273	Regulation of hepatic glucose metabolism in humans. Diabetes/metabolism Reviews, 1987, 3, 415-459.	0.3	139
274	Insulin Resistance in Essential Hypertension. New England Journal of Medicine, 1987, 317, 350-357.	27.0	2,338
275	Effect of bicycle exercise on insulin absorption and subcutaneous blood flow in the normal subject. Clinical Physiology, 1982, 2, 59-70.	0.7	34
276	The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism: Clinical and Experimental, 1980, 29, 28-35.	3.4	117
277	LACK OF A GASTROINTESTINAL MEDIATOR OF INSULIN ACTION IN MATURITY-ONSET DIABETES. Lancet, The, 1978, 312, 1077-1079.	13.7	32