Pher G Andersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chemical Society Reviews, 2006, 35, 237.	18.7	997
2	Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-type Catalysts: Scope and Limitations. Chemical Reviews, 2014, 114, 2130-2169.	23.0	413
3	Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones:  Mechanism and Origin of Enantioselectivity. Journal of the American Chemical Society, 1999, 121, 9580-9588.	6.6	299
4	Iridium catalysts for the asymmetric hydrogenation of olefins with nontraditional functional substituents. Coordination Chemistry Reviews, 2008, 252, 513-531.	9.5	225
5	Toward an Understanding of the High Enantioselectivity in the Osmium-Catalyzed Asymmetric Dihydroxylation (AD). 1. Kinetics. Journal of the American Chemical Society, 1994, 116, 1278-1291.	6.6	220
6	Mechanistic Studies of Copper-Catalyzed Alkene Aziridination. Journal of the American Chemical Society, 2000, 122, 8013-8020.	6.6	212
7	Iridium-Catalyzed Allylic Substitution. Topics in Organometallic Chemistry, 2011, , 169-208.	0.7	209
8	Ir-Catalysed Asymmetric Hydrogenation: Ligands, Substrates and Mechanism. Chemistry - A European Journal, 2006, 12, 3194-3200.	1.7	180
9	Pyranoside Phosphite–Oxazoline Ligands for the Highly Versatile and Enantioselective Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins. A Combined Theoretical and Experimental Study. Journal of the American Chemical Society, 2011, 133, 13634-13645.	6.6	163
10	Catalytic asymmetric dihydroxylation of tetrasubstituted olefins. Journal of the American Chemical Society, 1993, 115, 8463-8464.	6.6	159
11	Evolution and Prospects of the Asymmetric Hydrogenation of Unfunctionalized Olefins. Journal of the American Chemical Society, 2017, 139, 1346-1356.	6.6	154
12	New Mechanistic Insights into the Iridium–Phosphanooxazoline-Catalyzed Hydrogenation of Unfunctionalized Olefins: A DFT and Kinetic Study. Chemistry - A European Journal, 2003, 9, 339-347.	1.7	151
13	Asymmetric Hydrogenation of Trisubstituted Olefins with Iridiumâ^'Phosphine Thiazole Complexes:  A Further Investigation of the Ligand Structure. Journal of the American Chemical Society, 2006, 128, 2995-3001.	6.6	151
14	Rationally Designed Ligands for Asymmetric Iridium-Catalyzed Hydrogenation of Olefins. Journal of the American Chemical Society, 2004, 126, 14308-14309.	6.6	144
15	Mechanistic Insights into the Phosphine-Free RuCp*-Diamine-Catalyzed Hydrogenation of Aryl Ketones:Â Experimental and Theoretical Evidence for an Alcohol-Mediated Dihydrogen Activation. Journal of the American Chemical Society, 2005, 127, 15083-15090.	6.6	144
16	Deprotection of Sulfonyl Aziridines. Journal of Organic Chemistry, 1998, 63, 9455-9461.	1.7	136
17	(1S,3R,4R)-2-Azanorbornylmethanol, an Efficient Ligand for Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Ketones. Journal of Organic Chemistry, 1998, 63, 2749-2751.	1.7	135
18	Iridium Phosphiteâ^'Oxazoline Catalysts for the Highly Enantioselective Hydrogenation of Terminal Alkenes, Journal of the American Chemical Society, 2009, 131, 12344-12353	6.6	134

#	Article	IF	CITATIONS
19	Stereoselective intramolecular bis-silylation of alkenes promoted by a palladium-isocyanide catalyst leading to polyol synthesis. Journal of the American Chemical Society, 1993, 115, 6487-6498.	6.6	132
20	Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation. Topics in Organometallic Chemistry, 2011, 34, 107-138.	0.7	131
21	Palladium(II)-Catalyzed Cyclization Using Molecular Oxygen as Reoxidant. Tetrahedron Letters, 1995, 36, 7749-7752.	0.7	125
22	Origin of Enantioselectivity in the Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones. Journal of Organic Chemistry, 2004, 69, 4885-4890.	1.7	125
23	Asymmetric Hydrogenation of Imines and Olefins Using Phosphine-Oxazoline Iridium Complexes as Catalysts. Chemistry - A European Journal, 2006, 12, 2318-2328.	1.7	119
24	Iridium-Catalyzed Asymmetric Hydrogenation of Fluorinated Olefins Using N,P-Ligands:Â A Struggle with Hydrogenolysis and Selectivity. Journal of the American Chemical Society, 2007, 129, 4536-4537.	6.6	116
25	New and Highly Enantioselective Catalysts for the Rearrangement of meso-Epoxides into Chiral Allylic Alcohols. Journal of the American Chemical Society, 1998, 120, 10760-10761.	6.6	114
26	Preparation and evaluation of nitrene precursors (PhI=NSO2Ar) for the copper-catalyzed aziridination of olefins. Tetrahedron Letters, 1997, 38, 6897-6900.	0.7	113
27	Room temperature and solvent-free iridium-catalyzed selective alkylation of anilines with alcohols. Chemical Communications, 2013, 49, 6131.	2.2	113
28	Remote Dipole Effects as a Means to Accelerate [Ru(amino alcohol)]-Catalyzed Transfer Hydrogenation of Ketones. Chemistry - A European Journal, 2001, 7, 1431-1436.	1.7	112
29	Example of thermodynamic control in palladium-catalyzed allylic alkylation. Evidence for palladium-assisted allylic carbon-carbon bond cleavage. Journal of the American Chemical Society, 1993, 115, 6609-6613.	6.6	108
30	Enantioselectivity in the Iridium-Catalyzed Hydrogenation of Unfunctionalized Olefins. Organometallics, 2010, 29, 6769-6781.	1.1	108
31	2-Azanorbornyl Alcohols:Â Very Efficient Ligands for Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Aromatic Ketones. Journal of Organic Chemistry, 2000, 65, 3116-3122.	1.7	105
32	Palladium-catalyzed stereocontrolled intramolecular 1,4-additions to cyclic 1,3-dienes involving amides as nucleophiles. Journal of the American Chemical Society, 1990, 112, 3683-3685.	6.6	102
33	Chiral Pyranoside Phosphiteâ^'Oxazolines: A New Class of Ligand for Asymmetric Catalytic Hydrogenation of Alkenes. Journal of the American Chemical Society, 2008, 130, 7208-7209.	6.6	102
34	Preparation and Use of Aziridino Alcohols as Promoters for the Enantioselective Addition of Dialkylzinc Reagents toN-(Diphenylphosphinoyl) Imines. Journal of Organic Chemistry, 1997, 62, 7364-7375.	1.7	101
35	Allylic Alcohols via Catalytic Asymmetric Epoxide Rearrangement. Journal of the American Chemical Society, 2000, 122, 6610-6618.	6.6	101
36	Application of Phosphineâ ´'Oxazoline Ligands in Ir-Catalyzed Asymmetric Hydrogenation of Acyclic AromaticN-Arylimines. Organic Letters, 2004, 6, 3825-3827.	2.4	101

#	Article	IF	CITATIONS
37	lridium-Catalyzed Asymmetric Hydrogenation Yielding Chiral Diarylmethines with Weakly Coordinating or Noncoordinating Substituents. Journal of the American Chemical Society, 2009, 131, 8855-8860.	6.6	100
38	Investigation of the Effects of the Structure and Chelate Size of Bis-oxazoline Ligands in the Asymmetric Copper-Catalyzed Cyclopropanation of Olefins:Â Design of a New Class of Ligands. Journal of Organic Chemistry, 1997, 62, 2518-2526.	1.7	98
39	Combined Experimental and Theoretical Study of the Mechanism and Enantioselectivity of Palladium- Catalyzed Intermolecular Heck Coupling. Journal of the American Chemical Society, 2008, 130, 10414-10421.	6.6	97
40	Enantioselective Synthesis of Chiral Sulfones by Ir-Catalyzed Asymmetric Hydrogenation: A Facile Approach to the Preparation of Chiral Allylic and Homoallylic Compounds. Journal of the American Chemical Society, 2012, 134, 13592-13595.	6.6	96
41	C2-symmetric bis(aziridines): A new class of chiral ligands for transition metal-mediated asymmetric synthesis. Tetrahedron Letters, 1994, 35, 4631-4634.	0.7	95
42	lridium-N,P-Ligand-Catalyzed Enantioselective Hydrogenation of Diphenylvinylphosphine Oxides and Vinylphosphonates. Journal of the American Chemical Society, 2009, 131, 8285-8289.	6.6	94
43	Asymmetric Hydrogenation of Minimally Functionalised Terminal Olefins: An Alternative Sustainable and Direct Strategy for Preparing Enantioenriched Hydrocarbons. Chemistry - A European Journal, 2010, 16, 14232-14240.	1.7	93
44	Enantioselective Addition of Dialkylzinc Reagents toN-(Diphenylphosphinoyl) Imines Promoted by 2-Azanorbornylmethanols. Journal of Organic Chemistry, 1998, 63, 2530-2535.	1.7	90
45	Palladium-catalyzed tandem cyclization of 4,6- and 5,7-diene amides. A new route toward the pyrrolizidine and indolizidine alkaloids. Journal of the American Chemical Society, 1992, 114, 8696-8698.	6.6	89
46	CC Coupling of Ketones with Methanol Catalyzed by a Nâ€Heterocyclic Carbene–Phosphine Iridium Complex. Chemistry - A European Journal, 2015, 21, 3576-3579.	1.7	88
47	Intramolecular palladium-catalyzed 1,4-addition to conjugated dienes. Stereoselective synthesis of fused tetrahydrofurans and tetrahydropyrans. Journal of the American Chemical Society, 1992, 114, 6374-6381.	6.6	87
48	Asymmetric Hydrogenation of Enol Phosphinates by Iridium Catalysts Having N,P Ligands. Organic Letters, 2007, 9, 1659-1661.	2.4	86
49	An Enantioselective Approach to the Preparation of Chiral Sulfones by Ir-Catalyzed Asymmetric Hydrogenation. Journal of the American Chemical Society, 2014, 136, 16557-16562.	6.6	84
50	Chiral, bicyclic proline derivatives and their application as ligands for copper in the catalytic asymmetric allylic oxidation of olefins. Tetrahedron Letters, 1996, 37, 7577-7580.	0.7	82
51	Asymmetric base-mediated epoxide isomerisation. Chemical Society Reviews, 2002, 31, 223-229.	18.7	82
52	Asymmetric Hydrogenation Acta Chemica Scandinavica, 1996, 50, 380-390.	0.7	81
53	Intramolecular bis-silylation of carbon-carbon double bonds leading to stereoselective synthesis of 1,2,4-triols. Journal of the American Chemical Society, 1991, 113, 3987-3988.	6.6	78
54	Readily available nitrene precursors increase the scope of Evans' asymmetric aziridination of olefins. Tetrahedron: Asymmetry, 1997, 8, 3563-3565.	1.8	78

#	Article	IF	CITATIONS
55	Synthesis of (.+)alpha and (.+)gammalycorane via a stereocontrolled organopalladium route. Journal of Organic Chemistry, 1991, 56, 2988-2993.	1.7	76
56	Studies of Allylic Substitution Catalysed by a Palladium Complex of a <i>C</i> ₂ ‣ymmetric Bis(aziridine): Preparation and NMR Spectroscopic Investigation of a Chiral Ï€â€Allyl Species. Chemistry - A European Journal, 1995, 1, 12-16.	1.7	75
57	Asymmetric Total Synthesis of (+)-Tolterodine, a New Muscarinic Receptor Antagonist, via Copper-Assisted Asymmetric Conjugate Addition of Aryl Grignard Reagents to 3-Phenyl-prop-2-enoyl-oxazolidinones. Journal of Organic Chemistry, 1998, 63, 8067-8070.	1.7	74
58	Highly Enantioselective Iridiumâ€Catalyzed Hydrogenation of α,βâ€Unsaturated Esters. Chemistry - A European Journal, 2012, 18, 10609-10616.	1.7	74
59	lridium Catalysts with Chiral Imidazoleâ€Phosphine Ligands for Asymmetric Hydrogenation of Vinyl Fluorides and other Olefins. Advanced Synthesis and Catalysis, 2008, 350, 1168-1176.	2.1	73
60	Highly Enantioselective Intermolecular Cu(I)-Catalyzed Cyclopropanation of Cyclic Enol Ethers. Asymmetric Total Synthesis of (+)-Quebrachamine. Journal of Organic Chemistry, 1998, 63, 6007-6015.	1.7	69
61	lridium-catalyzed enantioselective hydrogenation of vinyl boronates. Chemical Communications, 2009, , 5996.	2.2	69
62	Highly Flexible Synthesis of Chiral Azacycles via Iridium-Catalyzed Hydrogenation. Journal of the American Chemical Society, 2010, 132, 8880-8881.	6.6	69
63	A new class of bis-oxazoline ligands for the Cu-catalysed asymmetric cyclopropanation of olefins. Tetrahedron Letters, 1996, 37, 4073-4076.	0.7	68
64	Iridium-Catalyzed Hydrogen Transfer Reactions. Topics in Organometallic Chemistry, 2011, , 77-106.	0.7	66
65	A Theoretical and Experimental Study of the Asymmetric Addition of Dialkylzinc toN-(Diphenylphosphinoyl)benzalimine. Chemistry - A European Journal, 1999, 5, 1692-1699.	1.7	65
66	Asymmetric Hydrogenation of Di and Trisubstituted Enol Phosphinates with N,P-Ligated Iridium Complexes. Journal of the American Chemical Society, 2008, 130, 5595-5599.	6.6	65
67	Iridium-Catalyzed Asymmetric Hydrogenation of Olefins with Chiral N,P and C,N Ligands. Topics in Organometallic Chemistry, 2011, , 31-76.	0.7	64
68	Highly Enantioselective Asymmetric Isomerization of Primary Allylic Alcohols with an Iridium–N,P Complex. Chemistry - A European Journal, 2011, 17, 11143-11145.	1.7	61
69	Ir-Catalyzed Functionalization of C–H Bonds. Topics in Organometallic Chemistry, 2011, , 139-167.	0.7	60
70	A dramatic ligand effect on the relative reactivities of substituted alkenes with osmium tetroxide. Journal of the American Chemical Society, 1993, 115, 7047-7048.	6.6	58
71	Adaptative Biaryl Phosphite–Oxazole and Phosphite–Thiazole Ligands for Asymmetric Ir atalyzed Hydrogenation of Alkenes. Chemistry - A European Journal, 2010, 16, 4567-4576.	1.7	58
72	Experimental and Theoretical Mechanistic Investigation of the Iridium-Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols. Journal of the American Chemical Society, 2015, 137, 834-842.	6.6	58

#	Article	IF	CITATIONS
73	New Catalysts for the Base-Promoted Isomerization of Epoxides to Allylic Alcohols. Broadened Scope and Near-Perfect Asymmetric Induction. Journal of Organic Chemistry, 2002, 67, 1567-1573.	1.7	57
74	Novel Catalytic Kinetic Resolution of Racemic Epoxides to Allylic Alcohols. Organic Letters, 2002, 4, 3777-3779.	2.4	57
75	Stereocontrolled oxaspirocyclization of conjugated dienes via palladium catalysis. Journal of Organic Chemistry, 1991, 56, 2274-2276.	1.7	56
76	Stereocontrolled lactonization reactions via palladium-catalysis. Tetrahedron Letters, 1989, 30, 137-140.	0.7	55
77	Stereocontrolled lactonization reactions via palladium-catalyzed 1,4-addition to conjugated dienes. Journal of Organic Chemistry, 1993, 58, 5445-5451.	1.7	54
78	On "The origin of high enantioselectivity in the dihydroxylation of olefins using osmium tetraoxide and cinchona alkaloid catalysts". Journal of the American Chemical Society, 1993, 115, 12226-12227.	6.6	54
79	Synthesis and evaluation of N,S-compounds as chiral ligands for transfer hydrogenation of acetophenoneElectronic supplementary information (ESI) available: NMR spectra. See http://www.rsc.org/suppdata/ob/b2/b208907f/. Organic and Biomolecular Chemistry, 2003, 1, 358-366.	1.5	53
80	Carbon-carbon bond formation in palladium(II)-catalyzed intramolecular 1,4-oxidation of conjugated dienes. Tetrahedron Letters, 1994, 35, 5713-5716.	0.7	51
81	Biaryl phosphite-oxazolines from hydroxyl aminoacid derivatives: highly efficient modular ligands for Ir-catalyzed hydrogenation of alkenes. Chemical Communications, 2008, , 3888.	2.2	50
82	Enantio- and Regioselective Ir-Catalyzed Hydrogenation of Di- and Trisubstituted Cycloalkenes. Journal of the American Chemical Society, 2016, 138, 11930-11935.	6.6	50
83	Catalytic Asymmetric Total Synthesis of the Muscarinic Receptor Antagonist (R)-Tolterodine. Advanced Synthesis and Catalysis, 2005, 347, 662-666.	2.1	49
84	Iridium-Catalysed Asymmetric Hydrogenation of Vinylsilanes as a Route to Optically Active Silanes. Advanced Synthesis and Catalysis, 2006, 348, 2575-2578.	2.1	48
85	Development of new thiazole-based iridium catalysts and their applications in the asymmetric hydrogenation of trisubstituted olefins. Organic and Biomolecular Chemistry, 2008, 6, 366-373.	1.5	48
86	Enantioconvergent and enantiodivergent catalytic hydrogenation of isomeric olefins. Chemical Society Reviews, 2020, 49, 2504-2522.	18.7	48
87	Mechanism of the Palladium-Catalyzed Elimination of Acetic Acid from Allylic Acetates. Organometallics, 1995, 14, 1-2.	1.1	47
88	Development of iridium-catalyzed asymmetric hydrogenation: New catalysts, new substrate scope. Journal of Organometallic Chemistry, 2012, 714, 3-11.	0.8	47
89	Synthesis of furanoid terpenes via an efficient palladium-catalyzed cyclization of 4,6-dienols. Journal of Organic Chemistry, 1991, 56, 5349-5353.	1.7	46
90	Total synthesis of balanol, part 2. Completion of the synthesis and investigation of the structure and reactivity of two key heterocyclic intermediates. Tetrahedron, 1997, 53, 4857-4868.	1.0	44

#	Article	IF	CITATIONS
91	Microwaveâ€Assisted Asymmetric Intermolecular Heck Reaction using Phosphineâ€Thiazole Ligands. Advanced Synthesis and Catalysis, 2007, 349, 2595-2602.	2.1	44
92	Highly Selective Iridium atalyzed Asymmetric Hydrogenation of Trifluoromethyl Olefins: A New Route to Trifluoromethyl―Bearing Stereocenters. Advanced Synthesis and Catalysis, 2009, 351, 375-378.	2.1	44
93	Selective Metal atalyzed Transfer of H ₂ and CO from Polyols to Alkenes. ChemSusChem, 2013, 6, 426-429.	3.6	44
94	C–N Coupling of Amides with Alcohols Catalyzed by N-Heterocyclic Carbene–Phosphine Iridium Complexes. Journal of Organic Chemistry, 2015, 80, 11529-11537.	1.7	44
95	Syntheses of Theaspirone and VitispiraneviaPalladium(II)-Catalyzed Oxaspirocyclization. Journal of Organic Chemistry, 1996, 61, 1825-1829.	1.7	42
96	Phosphite-oxazole/imidazoleligands in asymmetric intermolecular Heck reaction. Organic and Biomolecular Chemistry, 2011, 9, 941-946.	1.5	42
97	Chiral Hetero―and Carbocyclic Compounds from the Asymmetric Hydrogenation of Cyclic Alkenes. Chemistry - A European Journal, 2012, 18, 6507-6513.	1.7	42
98	Aziridino alcohols as catalysts for the enantioselective addition of diethylzinc to aldehydes. Tetrahedron, 1998, 54, 14213-14232.	1.0	41
99	Simple Aziridino Alcohols as Chiral Ligands. Enantioselective Additions of Diethylzinc to N-Diphenylphosphinoylimines. Synlett, 1996, 1996, 727-728.	1.0	39
100	Access to chiral tertiary amines via the iridium-catalyzed asymmetric hydrogenation of enamines. Tetrahedron Letters, 2008, 49, 7290-7293.	0.7	39
101	(1S, 3R, 4R)-2-Azanorbornyl-3-methanol oxazaborolidines in the asymmetric reduction of ketones. Tetrahedron, 1998, 54, 7897-7906.	1.0	38
102	Asymmetric reduction of azirines; a new route to chiral aziridines. Chemical Communications, 2002, , 1752-1753.	2.2	38
103	Revisiting the Stereodetermining Step in Enantioselective Iridium-Catalyzed Imine Hydrogenation. ACS Catalysis, 2018, 8, 615-623.	5.5	38
104	The use of stabilized carbon nucleophiles in palladium(II)-catalyzed 1,4-oxidation of conjugated dienes. Tetrahedron Letters, 1997, 38, 3603-3606.	0.7	37
105	New Expedient Route to Both Enantiomers of Nonproteinogenic α-Amino Acid Derivatives from the Unsaturated 2-Aza-Bicyclo Moiety. Journal of Organic Chemistry, 1999, 64, 2276-2280.	1.7	37
106	Catalytic Water Oxidation by a Molecular Ruthenium Complex: Unexpected Generation of a Single-Site Water Oxidation Catalyst. Inorganic Chemistry, 2015, 54, 4611-4620.	1.9	37
107	A synthetic approach to the Zoanthamine alkaloids. Tetrahedron, 1994, 50, 9135-9144.	1.0	36
108	Asymmetric hydrogenation of tri-substituted alkenes with Ir-NHC-thiazole complexes. Tetrahedron Letters, 2006, 47, 7477-7480.	0.7	36

7

#	Article	IF	CITATIONS
109	Bicyclic phosphine-thiazole ligands for the asymmetric hydrogenation of olefins. Tetrahedron: Asymmetry, 2010, 21, 1328-1333.	1.8	36
110	Sequential Birch reaction and asymmetric Ir-catalyzed hydrogenation as a route to chiral building blocks. Chemical Communications, 2011, 47, 3989.	2.2	36
111	Palladium-catalyzed oxaspirocyclizations. Tetrahedron, 1994, 50, 559-572.	1.0	35
112	Dielsâ [~] 'Alder Reaction of Heterocyclic Imine Dienophiles. Journal of Organic Chemistry, 2000, 65, 2810-2812.	1.7	35
113	Multigram scale synthesis of a useful aza-Diels–Alder adduct in a one-step procedure. Tetrahedron: Asymmetry, 2002, 13, 447-449.	1.8	35
114	Diastereo- and Enantioselective Synthesis of Fluorine Motifs with Two Contiguous Stereogenic Centers. Journal of the American Chemical Society, 2018, 140, 13878-13883.	6.6	35
115	Asymmetric Catalysis via Chiral Aziridines Acta Chemica Scandinavica, 1996, 50, 361-368.	0.7	35
116	Chiral N,Nâ€~- and N,O-Bidentate Anionic Ligands. Preparation, Metal Complexation, and Evaluation in the Asymmetric Aziridination of Olefins. Organometallics, 1999, 18, 1281-1286.	1.1	34
117	Asymmetric Hydrogenation of Allylic Alcohols Using Ir–N,P-Complexes. ACS Catalysis, 2016, 6, 8342-8349.	5.5	34
118	Iridium-catalysed asymmetric hydrogenation of allylic alcohols via dynamic kinetic resolution. Nature Catalysis, 2018, 1, 438-443.	16.1	34
119	Asymmetric addition of diethylzinc to N-(diphenylphosphinoyl) imines. Tetrahedron, 2001, 57, 1615-1618.	1.0	33
120	Synthesis and Screening of C ¹ ‣ubstituted Tetrahydroisoquinoline Derivatives for Asymmetric Transfer Hydrogenation Reactions. European Journal of Organic Chemistry, 2010, 2010, 972-980.	1.2	33
121	Extending the Substrate Scope of Bicyclic Pâ€Oxazoline/Thiazole Ligands for Ir atalyzed Hydrogenation of Unfunctionalized Olefins by Introducing a Biaryl Phosphoroamidite Group. Chemistry - A European Journal, 2015, 21, 3455-3464.	1.7	32
122	Regioselective Iridium-Catalyzed Asymmetric Monohydrogenation of 1,4-Dienes. Journal of the American Chemical Society, 2017, 139, 14470-14475.	6.6	31
123	A comparative study of C2-symmetric bis(aziridine) ligands in some transition metal-mediated asymmetric transformations. Tetrahedron, 1998, 54, 15731-15738.	1.0	30
124	Development of pinene-derived N,P ligands and their utility in catalytic asymmetric hydrogenation. Dalton Transactions, 2007, , 5603.	1.6	30
125	Enantioselective addition of organolithium reagents to imines mediated by C2-symmetric bis(aziridine) ligands. Tetrahedron, 1998, 54, 11549-11566.	1.0	29
126	A New Class of Modular P,Nâ€Ligand Library for Asymmetric Pdâ€Catalyzed Allylic Substitution Reactions: A Study of the Key Pd–i€â€Allyl Intermediates. Chemistry - A European Journal, 2010, 16, 620-638.	1.7	29

#	Article	IF	CITATIONS
127	Palladium(II)-catalyzed carbocyclization: Vinylpalladium in 1,4-oxidation of conjugated dienes. Tetrahedron, 1996, 52, 7511-7523.	1.0	28
128	Asymmetric Synthesis of Alkyl Fluorides: Hydrogenation of Fluorinated Olefins. Angewandte Chemie - International Edition, 2019, 58, 9282-9287.	7.2	28
129	The aza-Diels–Alder reaction protocol—a useful approach to chiral, sterically constrained α-amino acid derivatives. Tetrahedron, 2001, 57, 6399-6406.	1.0	27
130	Phosphineâ€Free Cp*Ru(Diamine) Catalysts in the Hydrogenation of Imines. Chemistry - an Asian Journal, 2008, 3, 1390-1394.	1.7	27
131	Asymmetric base-promoted epoxide rearrangement: achiral lithium amides revisited. Tetrahedron, 2002, 58, 4665-4668.	1.0	26
132	Synthesis of tetrahydroisoquinoline-diamine ligands and their application in asymmetric transfer hydrogenation. Tetrahedron: Asymmetry, 2010, 21, 679-687.	1.8	26
133	A rigid dirhodium(II) carboxylate as an efficient catalyst for the asymmetric cyclopropanation of olefins. Journal of Organometallic Chemistry, 2000, 603, 13-17.	0.8	25
134	Development of new camphor based N,S chiral ligands and their application in transfer hydrogenationElectronic supplementary information (ESI) available: 13C NMR spectra. See http://www.rsc.org/suppdata/ob/b4/b402805h/. Organic and Biomolecular Chemistry, 2004, 2, 1887.	1.5	25
135	Synthesis of tetrahydroisoquinoline (TIQ)–oxazoline ligands and their application in enantioselective Henry reactions. Tetrahedron: Asymmetry, 2010, 21, 846-852.	1.8	25
136	Preparation of pyrrolidine–oxazoline containing ligands and their application in asymmetric transfer hydrogenation. Tetrahedron, 2004, 60, 3405-3416.	1.0	24
137	Catalytic One-Pot Production of Small Organics from Polysaccharides. Synthesis, 2011, 2011, 1649-1677.	1.2	24
138	lridium catalysis: application of asymmetric reductive hydrogenation. Dalton Transactions, 2013, 42, 14345.	1.6	23
139	Diastereo- and Enantioselective Synthesis of Structurally Diverse Succinate, Butyrolactone, and Trifluoromethyl Derivatives by Iridium-Catalyzed Hydrogenation of Tetrasubstituted Olefins. ACS Catalysis, 2019, 9, 6169-6176.	5.5	23
140	Cinchona alkaloid derived ligands in catalytic asymmetric transfer hydrogenation. Organic and Biomolecular Chemistry, 2003, 1, 2522.	1.5	22
141	Iridium atalyzed Asymmetric Hydrogenation of Substituted Pyridines. Asian Journal of Organic Chemistry, 2013, 2, 1061-1065.	1.3	22
142	On the stereochemical outcome of the McMurry coupling of acetophenone. A reinvestigation. Tetrahedron Letters, 1994, 35, 2609-2610.	0.7	21
143	Development of a new class of (1S,3R,4R)-2-azabicyclo[2.2.1]heptane-oxazoline ligands and their application in asymmetric transfer hydrogenation. Tetrahedron, 2004, 60, 3393-3403.	1.0	21
144	Iridium-catalyzed asymmetric hydrogenation of olefins using TIQ phosphine–oxazoline ligands. Tetrahedron: Asymmetry, 2010, 21, 2295-2301.	1.8	21

#	Article	IF	CITATIONS
145	Palladium atalyzed Oxidative Synthesis of αâ€Acetoxylated Enones from Alkynes. Angewandte Chemie - International Edition, 2016, 55, 5824-5828.	7.2	21
146	A ruthenium water oxidation catalyst based on a carboxamide ligand. Dalton Transactions, 2016, 45, 3272-3276.	1.6	21
147	Introduction and History. Topics in Organometallic Chemistry, 2011, , 1-10.	0.7	20
148	Palladium-mediated stereo- and regioselective tandem-cyclization-carbonylations of 13-dienes. Tetrahedron Letters, 1994, 35, 4441-4444.	0.7	19
149	Asymmetric Full Saturation of Vinylarenes with Cooperative Homogeneous and Heterogeneous Rhodium Catalysis. Journal of the American Chemical Society, 2021, 143, 20377-20383.	6.6	19
150	Hydrosilylation of Imines. , 0, , 321-337.		18
151	Metal-Catalyzed Reductive Aldol Coupling. , 0, , 387-417.		18
152	Palladium-catalyzed reaction of a malonate anion with a glycine cation equivalent: Bis-phosphine ligands and in situ catalyst formation. Tetrahedron Letters, 1995, 36, 4205-4208.	0.7	17
153	Regio- and Stereoselective Deuteration of Allylic Chlorides Controlled by Neighboring Alcohol or Ether Groups. Journal of Organic Chemistry, 1996, 61, 4154-4156.	1.7	17
154	Kinetic resolution of racemic epoxides using a chiral diamine catalyst. Tetrahedron Letters, 2005, 46, 4805-4807.	0.7	17
155	Diverse Modes of Silane Activation for the Hydrosilylation of Carbonyl Compounds. , 0, , 183-207.		17
156	Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands. Topics in Organometallic Chemistry, 2011, , 11-29.	0.7	17
157	Palladium-Catalyzed Stereocontrolled endo Cyclization of 3-hydroxypropyl-1,3-cyclohexadiene Leading to Versatile Fused Tetrahydropyrans Tetrahedron Letters, 1995, 36, 5397-5400.	0.7	16
158	Rapid Access to Enantiopure Bicyclic Diamines viaaza-Dielsâ^'Alder Reaction of Iminoamides. Journal of Organic Chemistry, 2000, 65, 6736-6738.	1.7	16
159	Application of O2-DMSO as Reoxidant in the Pd(II)-Catalyzed 1,4-Oxidation of 5-Substituted 1,3-Cyclohexadienes Acta Chemica Scandinavica, 1997, 51, 773-777.	0.7	16
160	Reduction of Carbonyl Compounds by Hydrogen Transfer. , 0, , 135-157.		15
161	Catalytic asymmetric carbon–carbon bond forming reactions catalyzed by tetrahydroisoquinoline (TIQ) N,N′-dioxide ligands. Tetrahedron: Asymmetry, 2013, 24, 191-195.	1.8	15
162	Iridium-catalysed enantioselective formal deoxygenation of racemic alcohols via asymmetric hydrogenation. Nature Catalysis, 2019, 2, 1093-1100.	16.1	15

#	Article	IF	CITATIONS
163	Enantiocontrolled Formal Total Synthesis of Paeonilactone A and B from (S)-(+)-Carvone Acta Chemica Scandinavica, 1998, 52, 524-527.	0.7	15
164	Combined Theoretical and Experimental Studies Unravel Multiple Pathways to Convergent Asymmetric Hydrogenation of Enamides. Journal of the American Chemical Society, 2021, 143, 21594-21603.	6.6	15
165	Tandem Peterson olefination and chemoselective asymmetric hydrogenation of β-hydroxy silanes. Chemical Science, 2019, 10, 3649-3653.	3.7	14
166	The use of nonactivated iminodienophiles in the stereoselective aza-Diels–Alder reaction. Tetrahedron: Asymmetry, 2004, 15, 445-452.	1.8	13
167	Kinetic resolution of racemic allylic alcohols <i>via</i> iridium-catalyzed asymmetric hydrogenation: scope, synthetic applications and insight into the origin of selectivity. Chemical Science, 2021, 12, 1937-1943.	3.7	13
168	Highly Enantioselective Iridium-Catalyzed Hydrogenation of Conjugated Trisubstituted Enones. Organic Letters, 2021, 23, 242-246.	2.4	13
169	Iridium-catalyzed enantioconvergent hydrogenation of trisubstituted olefins. Nature Communications, 2022, 13, 361.	5.8	13
170	Bicyclic O,P Ligands for Catalytic Asymmetric 1,4-Addition toα,β-Unsaturated Ketones. Advanced Synthesis and Catalysis, 2004, 346, 549-553.	2.1	12
171	Irâ€Catalyzed Asymmetric and Regioselective Hydrogenation of Cyclic Allylsilanes and Generation of Quaternary Stereocenters via the Hosomiâ€Sakurai Allylation. Chemistry - A European Journal, 2018, 24, 1681-1685.	1.7	12
172	Asymmetric Total Synthesis of (â^')-Juvabione via Sequential Ir-Catalyzed Hydrogenations. Organic Letters, 2018, 20, 5676-5679.	2.4	12
173	Asymmetric synthesis of 1,2-fluorohydrin: iridium catalyzed hydrogenation of fluorinated allylic alcohol. Chemical Science, 2020, 11, 11189-11194.	3.7	12
174	Development of an asymmetric palladium-catalysed elimination. Tetrahedron: Asymmetry, 1996, 7, 2467-2470.	1.8	11
175	Ethnobotanical Survey and Toxicity Evaluation of Medicinal Plants used for Fungal Remedy in the Southern Highlands of Tanzania. Journal of Intercultural Ethnopharmacology, 2017, 6, 84.	0.9	11
176	Transitionâ€Metalâ€Catalyzed Regioselective Asymmetric Monoâ€Hydrogenation of Dienes and Polyenes. Chemistry - A European Journal, 2018, 24, 8022-8028.	1.7	11
177	Bi(OTf) ₃ Enabled Câ€F Bond Cleavage in HFIP: Electrophilic Aromatic Formylation with Difluoro(phenylsulfanyl)methane. Asian Journal of Organic Chemistry, 2018, 7, 1642-1647.	1.3	11
178	Studies on a Chiral (N,P) Ligand Containing a C2-Symmetric Aziridine Unit Acta Chemica Scandinavica, 1999, 53, 263-268.	0.7	11
179	Exploring the Substrate Scope of the Ru(II)-Catalyzed Kharasch Reaction. Collection of Czechoslovak Chemical Communications, 2007, 72, 1005-1013.	1.0	10
180	Iridium Catalysts with Chiral Bicyclic Pyridine–Phosphane Ligands for the Asymmetric Hydrogenation of Olefins. European Journal of Organic Chemistry, 2014, 2014, 140-146.	1.2	10

#	Article	IF	CITATIONS
181	Cationic NHCâ€Phosphine Iridium Complexes: Highly Active Catalysts for Baseâ€Free Hydrogenation of Ketones. Chemistry - A European Journal, 2020, 26, 13311-13316.	1.7	10
182	Synthesis of 6-Substituted 7-Bomoazabicyclo[2.2.1]heptanesvia Nucleophilic Addition to 3-Bromo-1-azoniatricyclo[2.2.1.0]-heptane Bromide. Advanced Synthesis and Catalysis, 2005, 347, 1242-1246.	2.1	9
183	New ligands for the RuCpâ^—-diamine catalysed asymmetric hydrogenation of aryl ketones. Comptes Rendus Chimie, 2007, 10, 213-219.	0.2	9
184	Formal Total Synthesis of Aliskiren. Chemistry - A European Journal, 2015, 21, 7292-7296.	1.7	9
185	Catalyst–solvent interactions in a dinuclear Ru-based water oxidation catalyst. Dalton Transactions, 2016, 45, 19024-19033.	1.6	9
186	A novel synthesis of chiral cyclopentyl- and cyclohexyl-amines. Chemical Communications, 1999, , 597-598.	2.2	8
187	A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol. Tetrahedron, 2003, 59, 9695-9700.	1.0	8
188	Alkene Reduction: Hydrosilylation. , 0, , 87-105.		8
189	Simple Prolineâ€Derived Phosphineâ€Thiazole Iridium Complexes for Asymmetric Hydrogenation of Trisubstituted Olefins. Asian Journal of Organic Chemistry, 2013, 2, 674-680.	1.3	8
190	Highly Diastereoselective Reaction of 2-Azanorbornyl Enolates with Electrophiles. Organic Letters, 1999, 1, 1595-1597.	2.4	6
191	Stereoselective Iridium-N,P-Catalyzed Double Hydrogenation of Conjugated Enones to Saturated Alcohols. Journal of the American Chemical Society, 2022, 144, 8734-8740.	6.6	6
192	Iridium-Catalyzed 1,3-Dipolar Cycloadditions. Topics in Organometallic Chemistry, 2011, , 209-229.	0.7	5
193	Asymmetric Synthesis of Alkyl Fluorides: Hydrogenation of Fluorinated Olefins. Angewandte Chemie, 2019, 131, 9383-9388.	1.6	5
194	Palladium-Catalyzed Allylic, Propargylic, and Allenic Substitution with Nitrogen, Oxygen, and Other Groups 15–17 Heteroatom Nucleophiles: CO and CN Bond Formation Involving Conjugated Dienes and Allylpalladium Intermediates. , 0, , 1859-1874.		4
195	Reduction of Functionalized Alkenes. , 0, , 1-38.		4
196	Thiazole, Imidazole and Oxazoline Based N,P‣igands for Palladiumâ€Catalyzed Cycloisomerization of 1,6â€Enynes. European Journal of Organic Chemistry, 2016, 2016, 3427-3433.	1.2	4
197	Site―and Enantioselective Iridium atalyzed Desymmetric Monoâ€Hydrogenation of 1,4â€Dienes. Angewandt Chemie - International Edition, 2021, 60, 19428-19434.	e _{7.2}	4
198	Exploring the Chemistry of 3-Substituted 2-Azanorbornyls in Asymmetric Catalysis. Synlett, 2000, 2000, 1092-1106.	1.0	3

#	Article	IF	CITATIONS
199	Birch Reaction Followed by Asymmetric Iridium-Catalysed Hydrogenation. Synthesis, 2011, 2011, 3796-3800.	1.2	3
200	Palladium atalyzed Oxidative Synthesis of αâ€Acetoxylated Enones from Alkynes. Angewandte Chemie, 2016, 128, 5918-5922.	1.6	3
201	Stereodivergent Synthesis of Trisubstituted Enamides: Direct Access to Both Pure Geometrical Isomers. Journal of Organic Chemistry, 2019, 84, 13540-13548.	1.7	3
202	Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups. Advances in Catalysis, 2021, 68, 135-203.	0.1	3
203	Synthesis of Chiral Tetrahydro-3-benzazepine Motifs by Iridium-Catalyzed Asymmetric Hydrogenation of Cyclic Ene-carbamates. Organic Letters, 2022, 24, 1969-1973.	2.4	3
204	Catalytic enantioselective synthesis of fluoromethylated stereocenters by asymmetric hydrogenation. Chemical Science, 0, , .	3.7	3
205	Palladium-catalyzed stereocontrolled endo cyclization of 3-hydroxypropyl-1,3-cyclohexadiene leading to versatile fused tetrahydropyrans. Tetrahedron Letters, 1995, 36, 5397-5400.	0.7	2
206	In vitro study for antifungal compounds from Parinari curatellifolia (Chrysobalanaceae) and Terminalia sericea (Combretaceae). International Journal of Biological and Chemical Sciences, 2021, 15, 367-378.	0.1	2
207	Monoâ€Nâ€Alkylation of Sulfonamides with Alcohols Catalyzed by Iridium Nâ€Heterocyclic Carbeneâ€Phosphine Complexes. Asian Journal of Organic Chemistry, 0, , .	1.3	2
208	Development of a new methodology for the preparation of optically active alcohols. Pure and Applied Chemistry, 2004, 76, 547-555.	0.9	1
209	Alkene and Imino Reductions by Organocatalysis. , 0, , 339-361.		1
210	Site―and Enantioselective Iridiumâ€Catalyzed Desymmetric Monoâ€Hydrogenation of 1,4â€Dienes. Angewand Chemie, 2021, 133, 19577-19583.	te 1.6	1
211	Novel Catalytic Kinetic Resolution of Racemic Epoxides to Allylic Alcohols ChemInform, 2003, 34, no.	0.1	0
212	Synthesis and Evaluation of N,S-Compounds as Chiral Ligands for Transfer Hydrogenation of Acetophenone ChemInform, 2003, 34, no.	0.1	0
213	Chinchona Alkaloid Derived Ligands in Catalytic Asymmetric Transfer Hydrogenation ChemInform, 2003, 34, no.	0.1	0
214	Development of a New Class of (1S,3R,4R)-2-Azabicyclo[2.2.1]heptane-oxazoline Ligands and Their Application in Asymmetric Transfer Hydrogenation ChemInform, 2004, 35, no.	0.1	0
215	Preparation of Pyrrolidine—Oxazoline Containing Ligands and Their Application in Asymmetric Transfer Hydrogenation ChemInform, 2004, 35, no.	0.1	0
216	Development of New Camphor-Based N,S Chiral Ligands and Their Application in Transfer Hydrogenation. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
217	Rationally Designed Ligands for Asymmetric Iridium-Catalyzed Hydrogenation of Olefins ChemInform, 2005, 36, no.	0.1	0
218	Kinetic Resolution of Racemic Epoxides Using a Chiral Diamine Catalyst ChemInform, 2005, 36, no.	0.1	0
219	Frontispiece: Transitionâ€Metalâ€Catalyzed Regioselective Asymmetric Monoâ€Hydrogenation of Dienes and Polyenes. Chemistry - A European Journal, 2018, 24, .	1.7	0