
Serge M Mignani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendrimer nanoplatforms for veterinary medicine applications: A concise overview. Drug Discovery Today, 2022, 27, 1251-1260.	3.2	7
2	Advances in prodrug design for Alzheimer's disease: the state of the art. Expert Opinion on Drug Discovery, 2022, 17, 325-341.	2.5	2
3	Crown Macromolecular Derivatives: Stepwise Design of New Types of Polyfunctionalized Phosphorus Dendrimers. Journal of Organic Chemistry, 2022, , .	1.7	2
4	Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. International Journal of Molecular Sciences, 2022, 23, 4391.	1.8	6
5	Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury. Theranostics, 2022, 12, 3407-3419.	4.6	17
6	Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules, 2022, 23, 2827-2837.	2.6	12
7	Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. European Journal of Medicinal Chemistry, 2021, 209, 112905.	2.6	35
8	Multivalent Copper(II)-Conjugated Phosphorus Dendrimers with Noteworthy <i>In Vitro</i> and <i>In Vivo</i> Antitumor Activities: A Concise Overview. Molecular Pharmaceutics, 2021, 18, 65-73.	2.3	8
9	In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discovery Today, 2021, 26, 677-689.	3.2	23
10	Impact of molecular rigidity on the gene delivery efficiency of core–shell tecto dendrimers. Journal of Materials Chemistry B, 2021, 9, 6149-6154.	2.9	7
11	Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Organic Chemistry Frontiers, 2021, 8, 4607-4622.	2.3	11
12	Dendritic Macromolecular Architectures: Dendrimer-Based Polyion Complex Micelles. Biomacromolecules, 2021, 22, 262-274.	2.6	12
13	Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. Journal of Biotechnology, 2021, 331, 48-52.	1.9	3
14	Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release, 2021, 332, 346-366.	4.8	29
15	Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of <i>Mycobacterium tuberculosis</i> : A New Therapy to Take Down Tuberculosis. Biomacromolecules, 2021, 22, 2659-2675.	2.6	18
16	First-in-Class Phosphorus Dendritic Framework, a Wide Surface Functional Group Palette Bringing Noteworthy Anti-Cancer and Anti-Tuberculosis Activities: What Lessons to Learn?. Molecules, 2021, 26, 3708.	1.7	3
17	First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. European Journal of Medicinal Chemistry, 2021, 219, 113456.	2.6	22
18	Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. Journal of Controlled Release, 2021, 337, 356-370.	4.8	16

Serge M Mignani

#	Article	IF	CITATIONS
19	Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. Pharmaceutics, 2021, 13, 1513.	2.0	14
20	Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjugate Chemistry, 2021, 32, 339-349.	1.8	20
21	Blood Compatibility of Amphiphilic Phosphorous Dendrons—Prospective Drug Nanocarriers. Biomedicines, 2021, 9, 1672.	1.4	4
22	Donecopride, a Swiss army knife with potential against Alzheimer's disease. British Journal of Pharmacology, 2020, 177, 1988-2005.	2.7	19
23	From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. Molecules, 2020, 25, 3320.	1.7	21
24	Phosphorus dendrimers as powerful nanoplatforms for drug delivery, as fluorescent probes and for liposome interaction studies: A concise overview. European Journal of Medicinal Chemistry, 2020, 208, 112788.	2.6	13
25	Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chemistry, 2020, 31, 2060-2071.	1.8	38
26	Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules, 2020, 21, 2502-2511.	2.6	40
27	Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. Nano Today, 2020, 33, 100899.	6.2	32
28	Potent Anticancer Efficacy of Firstâ€Inâ€Class Cu II and Au III Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. Chemistry - A European Journal, 2020, 26, 5903-5910.	1.7	15
29	In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer. International Journal of Molecular Sciences, 2020, 21, 4456.	1.8	13
30	Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coordination Chemistry Reviews, 2020, 421, 213463.	9.5	57
31	Dendrimer– and polymeric nanoparticle–aptamer bioconjugates as nonviral delivery systems: a new approach in medicine. Drug Discovery Today, 2020, 25, 1065-1073.	3.2	36
32	Metalâ€based phosphorus dendrimers as novel nanotherapeutic strategies to tackle cancers: A concise overview. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1577.	3.3	13
33	Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. ChemPlusChem, 2019, 84, 1070-1080.	1.3	23
34	Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells. Nanoscale, 2019, 11, 17230-17234.	2.8	5
35	Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. Nano Letters, 2019, 19, 1216-1226.	4.5	88
36	Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine. Bioconjugate Chemistry, 2019, 30, 1938-1950.	1.8	27

3

#	Article	IF	CITATIONS
37	Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discovery Today, 2019, 24, 1176-1183.	3.2	32
38	Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today, 2019, 24, 1184-1192.	3.2	29
39	Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids and Surfaces B: Biointerfaces, 2019, 179, 226-232.	2.5	4
40	Design, complexing and catalytic properties of phosphorus thiazoles and benzothiazoles: a concise overview. New Journal of Chemistry, 2019, 43, 16785-16795.	1.4	5
41	Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Science China Materials, 2018, 61, 1367-1386.	3.5	26
42	Synthesis of dissymmetric phosphorus dendrimers using an unusual protecting group. New Journal of Chemistry, 2018, 42, 8985-8991.	1.4	4
43	Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chemical Society Reviews, 2018, 47, 1874-1900.	18.7	300
44	Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organic–metallic macromolecules. Coordination Chemistry Reviews, 2018, 358, 80-91.	9.5	18
45	Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. Journal of Materials Chemistry B, 2018, 6, 884-895.	2.9	64
46	Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. Drug Discovery Today, 2018, 23, 605-615.	3.2	77
47	First-in-Class Combination Therapy of a Copper(II) Metallo-Phosphorus Dendrimer with Cytotoxic Agents. Oncology, 2018, 94, 324-328.	0.9	12
48	Dendrimers in combination with natural products and analogues as anti-cancer agents. Chemical Society Reviews, 2018, 47, 514-532.	18.7	156
49	Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 2018, 136-137, 73-81.	6.6	47
50	New opportunities of dendrimers for theranostic approaches to personalized medicine. Science China Materials, 2018, 61, 1365-1366.	3.5	0
51	Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy. Pharmaceutics, 2018, 10, 162.	2.0	78
52	Elucidating the role of surface chemistry on cationic phosphorus dendrimer–siRNA complexation. Nanoscale, 2018, 10, 10952-10962.	2.8	20
53	New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers. Pharmaceutics, 2018, 10, 105.	2.0	28
54	Enhanced Delivery of Therapeutic siRNA into Glioblastoma Cells Using Dendrimer-Entrapped Gold Nanoparticles Conjugated with β-Cyclodextrin. Nanomaterials, 2018, 8, 131.	1.9	66

#	Article	IF	CITATIONS
55	Hydrogels of Polycationic Acetohydrazone-Modified Phosphorus Dendrimers for Biomedical Applications: Gelation Studies and Nucleic Acid Loading. Pharmaceutics, 2018, 10, 120.	2.0	8
56	Symmetrical and unsymmetrical incorporation of active biological monomers on the surface of phosphorus dendrimers. Tetrahedron, 2017, 73, 1331-1341.	1.0	7
57	Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B: Biointerfaces, 2017, 152, 414-422.	2.5	42
58	A promising dual mode SPECT/CT imaging platform based on ^{99m} Tc-labeled multifunctional dendrimer-entrapped gold nanoparticles. Journal of Materials Chemistry B, 2017, 5, 3810-3815.	2.9	39
59	Anti-Inflammatory Effect of Anti-TNF-α SiRNA Cationic Phosphorus Dendrimer Nanocomplexes Administered Intranasally in a Murine Acute Lung Injury Model. Biomacromolecules, 2017, 18, 2379-2388.	2.6	78
60	Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. European Journal of Medicinal Chemistry, 2017, 132, 142-156.	2.6	65
61	Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines. Molecular Pharmaceutics, 2017, 14, 1821-1830.	2.3	24
62	Original Multivalent Gold(III) and Dual Gold(III)–Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents. Molecular Pharmaceutics, 2017, 14, 4087-4097.	2.3	54
63	Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Progress in Polymer Science, 2017, 64, 23-51.	11.8	54
64	Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity. Molecules, 2017, 22, 345.	1.7	15
65	Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids and Interfaces, 2017, 1, 6.	0.9	26
66	Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discovery Today, 2016, 21, 1873-1885.	3.2	86
67	Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. Journal of Materials Chemistry B, 2016, 4, 4216-4226.	2.9	80
68	Thiazoyl phosphines. Design, reactivity, and complexation. Dalton Transactions, 2016, 45, 9695-9703.	1.6	5
69	A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action. European Journal of Medicinal Chemistry, 2016, 122, 656-673.	2.6	33
70	Compound high-quality criteria: a new vision to guide the development of drugs, current situation. Drug Discovery Today, 2016, 21, 573-584.	3.2	32
71	Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers. Analytical and Bioanalytical Chemistry, 2016, 408, 535-544.	1.9	27
72	Why and how have drug discovery strategies in pharma changed? What are the new mindsets?. Drug Discovery Today, 2016, 21, 239-249.	3.2	62

5

Serge M Mignani

#	Article	IF	CITATIONS
73	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.	2.1	31
74	Synthesis of Onionâ€Peel Nanodendritic Structures with Sequential Functional Phosphorus Diversity. Chemistry - A European Journal, 2015, 21, 6400-6408.	1.7	35
75	Phosphorus-containing nanoparticles: biomedical patents review. Expert Opinion on Therapeutic Patents, 2015, 25, 539-548.	2.4	6
76	Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue. International Journal of Pharmaceutics, 2015, 492, 266-274.	2.6	34
77	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294.	2.6	71
78	RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T ₁ -weighted MR imaging of gliomas. Nanoscale, 2015, 7, 14538-14546.	2.8	128
79	Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report. Biomacromolecules, 2015, 16, 1-27.	2.6	117
80	Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs. Nanoscale, 2015, 7, 3915-3922.	2.8	26
81	Dendrimer Space Exploration: An Assessment of Dendrimers/Dendritic Scaffolding as Inhibitors of Protein–Protein Interactions, a Potential New Area of Pharmaceutical Development. Chemical Reviews, 2014, 114, 1327-1342.	23.0	72
82	Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3825-30.	3.3	96
83	In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage. International Journal of Pharmaceutics, 2014, 474, 42-49.	2.6	21
84	Interference of cationic polymeric nanoparticles with clinical chemistry tests—Clinical relevance. International Journal of Pharmaceutics, 2014, 473, 599-606.	2.6	15
85	Mechanism of Cationic Phosphorus Dendrimer Toxicity against Murine Neural Cell Lines. Molecular Pharmaceutics, 2013, 10, 3484-3496.	2.3	33
86	Original Multivalent Copper(II)-Conjugated Phosphorus Dendrimers and Corresponding Mononuclear Copper(II) Complexes with Antitumoral Activities. Molecular Pharmaceutics, 2013, 10, 1459-1464.	2.3	88
87	Copper in dendrimer synthesis and applications of copper–dendrimer systems in catalysis: a concise overview. Tetrahedron, 2013, 69, 3103-3133.	1.0	27
88	Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Advanced Drug Delivery Reviews, 2013, 65, 1316-1330.	6.6	271
89	Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Progress in Polymer Science, 2013, 38, 993-1008.	11.8	104
90	Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. New Journal of Chemistry, 2013, 37, 3337.	1.4	46

#	Article	IF	CITATIONS
91	Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells. Molecules, 2013, 18, 12222-12240.	1.7	19
92	Dendrimer therapeutics: covalent and ionic attachments. New Journal of Chemistry, 2012, 36, 227-240.	1.4	57
93	Stable functionalized PEGylated quantum dots micelles with a controlled stoichiometry. Chemical Communications, 2011, 47, 1246-1248.	2.2	5
94	Synthesis of new macromolecular, functionalized carboxylic-acid–PEG–DHLA surface ligands. Tetrahedron Letters, 2010, 51, 5364-5367.	0.7	2
95	Total Synthesis of Herbimycin A. Organic Letters, 2007, 9, 145-148.	2.4	50
96	From PtCl2- and Acid-Catalyzed to Uncatalyzed Cycloisomerization of 2-Propargyl Anilines: Access to Functionalized Indoles. Angewandte Chemie - International Edition, 2007, 46, 1881-1884.	7.2	124
97	The use of N-sulfenylimines in the \hat{l}^2 -lactam synthon method: Staudinger reaction, oxidation of the cycloadducts and ring opening of \hat{l}^2 -lactams. Tetrahedron, 2007, 63, 3205-3216.	1.0	20
98	Stereoselective synthesis of trans-disubstituted-β-lactams from N-phenylsulfenylimines. Tetrahedron Letters, 2007, 48, 4301-4303.	0.7	10
99	Rearrangement of Homoallylic Alcohols Induced by DAST. Organic Letters, 2006, 8, 2091-2094.	2.4	9
100	Synthesis and Structure—Activity Relationship of 4,10-Dihydro-4-oxo-4H-imidazo[1,2-a]indeno[1,2-e]pyrazine Derivatives: Highly Potent and Selective AMPA Receptor Antagonists with in vivo Activity. ChemInform, 2004, 35, no.	0.1	0
101	Synthesis and Structure-Activity Relationships of 4,10-Dihydro-4-oxo-4HImidazo[1,2-a]Indeno[1,2-e]Pyrazine Derivatives: Highly Potent and Selective AMPA Receptor Antagonists with In Vivo Activity. Mini-Reviews in Medicinal Chemistry, 2004, 4, 123-140.	1.1	4
102	Synthesis of non-immunosuppressive cyclophilin-Binding cyclosporin A derivatives as potential anti-HIV-1 drugs. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4415-4419.	1.0	17
103	Solid phase β-lactams synthesis using the Staudinger reaction, monitored by 19F NMR spectroscopy. Tetrahedron, 2003, 59, 3719-3727.	1.0	28
104	9-Carboxymethyl-5 H ,10 H -imidazo[1,2- a]indeno[1,2- e]pyrazin-4-one-2-carbocylic Acid (RPR117824): Selective Anticonvulsive and Neuroprotective AMPA Antagonist. Bioorganic and Medicinal Chemistry, 2002, 10, 1627-1637.	1.4	35
105	Bioisosteres of 9-Carboxymethyl-4-oxo-imidazo[1,2- a]indeno[1,2- e]pyrazin-2-carboxylic acid derivatives. Progress towards selective, potent In Vivo AMPA antagonists with longer durations of action. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 127-132.	1.0	13
106	Synthesis of anticonvulsive AMPA antagonists. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1205-1210.	1.0	11
107	8-Methylureido-4,5-dihydro-4-oxo-10 H -imidazo[1,2- a]indeno-[1,2- e]pyrazines: highly potent in vivo AMPA antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 591-596.	1.0	13
108	4,10-Dihydro-4-oxo-4 H -imidazo[1,2- a]indeno[1,2- e]pyrazin-2-carboxylic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1133-1137.	1.0	16

#	Article	lF	CITATIONS
109	Synthesis and potent anticonvulsant activities of 4-oxo-imidazo[1,2-a]indeno[1,2-e]pyrazin-8- and -9-carboxylic (acetic) acid AMPA antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2749-2754.	1.0	14
110	8-Methylureido-10-amino-10-methyl-imidazo[1,2- a]indeno[1,2- e]pyrazine-4-ones: Highly In vivo Potent and Selective AMPA Receptor Antagonists. Bioorganic and Medicinal Chemistry, 2000, 8, 2211-2217.	1.4	6
111	Indeno[1,2-b]pyrazin-2,3-diones: A New Class of Antagonists at the Glycine Site of the NMDA Receptor with Potent in Vivo Activity. Journal of Medicinal Chemistry, 2000, 43, 2371-2381.	2.9	21
112	Stereoselective Cycloaddition of Monosubstituted Ketene to a Methyl Glyoxylate- and Threonine-Derived Imine: Synthesis of Optically Pure β-Lactamic α-Amino Ester with High Functionality. Synthetic Communications, 2000, 30, 3685-3691.	1.1	6
113	Synthesis of C2-symmetric bis(cyclic isothioureas) as potent inhibitors of glycosidases. Tetrahedron Letters, 1999, 40, 3705-3708.	0.7	4
114	Synthesis of azepane scaffolds on solid support for combinatorial chemistry. Tetrahedron Letters, 1999, 40, 6005-6008.	0.7	26
115	Spiro-imidazo[1,2-a]indeno[1,2-e]pyrazine-4-one derivatives are mixed AMPA and NMDA glycine-site antagonists active in vivo. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2921-2926.	1.0	24
116	Synthesis of novel proline and Γ-lactam derivatives as non-peptide mimics of Somatostatin/Sandostatin®. Tetrahedron, 1999, 55, 10135-10154.	1.0	21
117	Synthesis of six-membered silaheterocycles by the ring enlargement of 1,1-diphenyl-1-silacyclopent-3-ene. Heteroatom Chemistry, 1999, 10, 171-175.	0.4	2
118	Synthesis and pharmacological properties of 5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazine-4-one, a new competitive AMPA/KA receptor antagonist. Drug Development Research, 1999, 48, 121-129.	1.4	12
119	Riluzole Series. Synthesis and in Vivo "Antiglutamate―Activity of 6-Substituted-2-benzothiazolamines and 3-Substituted-2-imino-benzothiazolines. Journal of Medicinal Chemistry, 1999, 42, 2828-2843.	2.9	203
120	Stereoselective synthesis of racemic α-amino-acid derivatives with a β-lactam skeleton: Application of the Staudinger reaction to chiral imines of methyl glyoxylate. Tetrahedron, 1998, 54, 11501-11516.	1.0	23
121	Construction of 2,3- and 3,4-Functionalized Silacyclopentanes: Synthesis of 6-Aza-2,2-Diphenyl-2-Silabicyclo[3.1.0]Hexane and 6-Aza-3,3-Diphenyl-3-Silabicyclo[3.1.0]Hexane Derivatives. Synthetic Communications, 1998, 28, 1163-1173.	1.1	6
122	Synthesis and Binding Affinities of Novel Spirocyclic Lactam Peptidomimetics of Somatostatin. Chemistry Letters, 1998, 27, 943-944.	0.7	13
123	Neuroprotective effects of RPR 104632, a novel antagonist at the glycine site of the NMDA receptor, in vitro. European Journal of Pharmacology, 1996, 300, 237-246.	1.7	14
124	The naphtosultam derivative RP 62203 (fananserin) has high affinity for the dopamine D4 receptor. European Journal of Pharmacology, 1996, 314, 229-233.	1.7	17
125	Design, synthesis and binding affinities of novel non-peptide mimics of somatostatin/sandostatin®. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1667-1672.	1.0	43
126	Radical-Induced Cyclizations of 1-Sila-cyclopent-2-ene Derivatives: Synthesis of Novel Azasilabicyclic Compounds. Synlett, 1996, 1996, 890-892.	1.0	7

#	Article	IF	CITATIONS
127	A Convenient Large Scale Synthesis of 1, 1-Diphenyl-1 -silacyclopent-3-ene. Synthetic Communications, 1995, 25, 3855-3861.	1.1	15
128	1,1-diphenyl-3-dialkylamino-1-silacyclopentane derivatives: A new class of potent and selective 5-HT2A antagonists. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 415-420.	1.0	14
129	3,4-Functionalized silacyclopentanes. Synthesis of trans-4-amino-, azido- and alkyloxy-1-silacyclopentan-3-ols from 6-oxa-3-silabicyclo[3.1.0]hexanes. Journal of Organometallic Chemistry, 1994, 484, 119-127.	0.8	12
130	Synthesis and sar of 2h-1,2,4-benzothiadiazine-1,1-dioxide-3- carboxylic acid derivatives as novel potent glycine antagonists of the nmda receptor-channel complex. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2735-2740.	1.0	20
131	A Novel and Efficient Approach to the Synthesis of 4-Amino-1-sila-cyclopent-2-enes. Synthetic Communications, 1994, 24, 2017-2027.	1.1	3
132	Optical isomers of RP 64406: New potent antiglutamate agents. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 983-988.	1.0	3
133	New indole derivatives as potent and selective serotonin uptake inhibitors. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1913-1918.	1.0	15
134	New indole derivatives as potent and selective serotonin uptake inhibitors. Journal of Medicinal Chemistry, 1993, 36, 1194-1202.	2.9	23
135	1,2,4-Thiadiazino[3,4-b]benzothiazole: A New Cyclic Sulphenimine. Heterocycles, 1993, 36, 2745.	0.4	5
136	Versatile Methods for the Synthesis of 2-Amino-6-trifluoromethoxy-(nitro)benzothiazoles. Synthetic Communications, 1992, 22, 2769-2780.	1.1	8
137	An Efficient Synthesis of 4.4-Dephenylcyclopentene. Synthetic Communications, 1990, 20, 1959-1965.	1.1	1
138	Stereocontrolled cyclopentenone synthesis via cycloaddition. Journal of the American Chemical Society, 1989, 111, 7487-7500.	6.6	87
139	Captodative Substituent Effects. ―Part 49 ¹ ESR Study of Carbon Centered Transient Radicals Using αâ€Tert.Butylthioacrylonitrile as Radical Trap. Bulletin Des Sociétés Chimiques Belges, 1989, 98, 859-864.	0.0	2
140	2-[(Trimethylsilyl)methyl]-1-(trimethylsilyl)propen-3-yl carboxylates in cycloaddition. Novel approach for substitutive cyclopentannulation. Journal of the American Chemical Society, 1988, 110, 1602-1608.	6.6	40
141	Carboxylative trimethylenemethane cycloadditions catalyzed by palladium. Journal of the American Chemical Society, 1986, 108, 6051-6053.	6.6	21
142	Tandem palladium-catalyzed elimination-cyclization. Journal of Organic Chemistry, 1986, 51, 3435-3439.	1.7	16
143	A stereospecific palladium mediated [3+2] cycloaddition. Tetrahedron Letters, 1986, 27, 4137-4140.	0.7	47
144	Couplage okydatif facile d'anions substitues captodativement. Tetrahedron Letters, 1985, 26, 4607-4608.	0.7	3

#	Article	IF	CITATIONS
145	X-Ray photoelectron spectroscopic study of captodative olefins: electronic structure of α-thio-acrylonitrile derivatives. Journal of the Chemical Society Perkin Transactions II, 1985, , 883-885.	0.9	1
146	Engineered phosphorus dendrimers as powerful non-viral nanoplatforms for gene delivery: a great hope for the future of cancer therapeutics. Exploration of Targeted Anti-tumor Therapy, 0, , 50-61.	0.5	1