Giacomo P Comi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nature Genetics, 2001, 28, 223-231.	9.4	803
2	Role of Adenine Nucleotide Translocator 1 in mtDNA Maintenance. Science, 2000, 289, 782-785.	6.0	591
3	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
4	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
5	Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle and Nerve, 2014, 50, 477-487.	1.0	357
6	Mutations of mitochondrial DNA polymerase ?A are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Annals of Neurology, 2002, 52, 211-219.	2.8	257
7	Cytochromec Oxidase subunit I microdeletion in a patient with motor neuron disease. Annals of Neurology, 1998, 43, 110-116.	2.8	251
8	Identification of a Primitive Brain-Derived Neural Stem Cell Population Based on Aldehyde Dehydrogenase Activity. Stem Cells, 2006, 24, 975-985.	1.4	240
9	Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. Journal of Experimental Medicine, 2009, 206, 1395-1408.	4.2	230
10	Polyneuropathy in POEMS syndrome: role of angiogenic factors in the pathogenesis. Brain, 2005, 128, 1911-1920.	3.7	216
11	Autologous Transplantation of Muscle-Derived CD133+ Stem Cells in Duchenne Muscle Patients. Cell Transplantation, 2007, 16, 563-577.	1.2	214
12	Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nature Genetics, 2013, 45, 214-219.	9.4	198
13	Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain, 2004, 127, 2518-2532.	3.7	187
14	Genetic Correction of Human Induced Pluripotent Stem Cells from Patients with Spinal Muscular Atrophy. Science Translational Medicine, 2012, 4, 165ra162.	5.8	180
15	The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Molecular Neurobiology, 2020, 57, 2959-2980.	1.9	180
16	Infantile Encephalopathy and Defective Mitochondrial DNA Translation in Patients with Mutations of Mitochondrial Elongation Factors EFG1 and EFTu. American Journal of Human Genetics, 2007, 80, 44-58.	2.6	172
17	Reliability of the North Star Ambulatory Assessment in a multicentric setting. Neuromuscular Disorders, 2009, 19, 458-461.	0.3	171
18	Congenital muscular dystrophies with defective glycosylation of dystroglycan. Neurology, 2009, 72, 1802-1809.	1.5	166

#	Article	IF	CITATIONS
19	Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Human Mutation, 2008, 29, 258-266.	1.1	162
20	Phenotypic heterogeneity of the 8344A>G mtDNA "MERRF―mutation. Neurology, 2013, 80, 2049-2054.	1.5	157
21	Cognitive impairment in Duchenne muscular dystrophy. Neuromuscular Disorders, 1994, 4, 359-369.	0.3	152
22	Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2010, 47, 190-194.	1.5	152
23	Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Research, 2009, 19, 199-212.	2.4	147
24	Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscular Disorders, 2016, 26, 643-649.	0.3	144
25	Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell Research, 2012, 318, 1528-1541.	1.2	143
26	Identification of Novel Mutations in the Ryanodine-Receptor Gene (RYR1) in Malignant Hyperthermia: Genotype-Phenotype Correlation. American Journal of Human Genetics, 1998, 62, 599-609.	2.6	141
27	Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. Journal of Neurology, 2011, 258, 1610-1623.	1.8	134
28	Neural stem cells LewisX + CXCR4 + modify disease progression in an amyotrophic lateral sclerosis model. Brain, 2007, 130, 1289-1305.	3.7	127
29	?-enolase deficiency, a new metabolic myopathy of distal glycolysis. Annals of Neurology, 2001, 50, 202-207.	2.8	125
30	A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 2220-2231.	1.4	123
31	Mitochondrial Respiratory Chain Dysfunction in Muscle From Patients With Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 849-54.	4.9	122
32	Loss-of-function mutations of SURF-1 are specifically associated with Leigh syndrome with cytochromec oxidase deficiency. Annals of Neurology, 1999, 46, 161-166.	2.8	121
33	The Mitochondrial Disulfide Relay System Protein GFER Is Mutated in Autosomal-Recessive Myopathy with Cataract and Combined Respiratory-Chain Deficiency. American Journal of Human Genetics, 2009, 84, 594-604.	2.6	121
34	Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Research, 2004, 32, 1783-1791.	6.5	120
35	Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. Journal of Clinical Investigation, 2008, 118, 3316-3330.	3.9	119
36	Stem cell therapy in stroke. Cellular and Molecular Life Sciences, 2009, 66, 757-772.	2.4	119

3

#	Article	IF	CITATIONS
37	The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender?. Journal of Neurology, 2014, 261, 504-510.	1.8	119
38	Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nature Reviews Neurology, 2015, 11, 351-359.	4.9	119
39	Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. Journal of Neurology, 1995, 242, 304-312.	1.8	115
40	Vascular endothelial growth factor gene variability is associated with increased risk for AD. Annals of Neurology, 2005, 57, 373-380.	2.8	115
41	Mutations in DNA2 Link Progressive Myopathy to Mitochondrial DNA Instability. American Journal of Human Genetics, 2013, 92, 293-300.	2.6	115
42	MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. Journal of the Neurological Sciences, 2015, 356, 7-18.	0.3	112
43	Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1041-1053.	1.8	111
44	SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Frontiers in Cellular Neuroscience, 2015, 9, 336.	1.8	111
45	Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA Neurology, 2015, 72, 666.	4.5	106
46	Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation. Biological Psychiatry, 2013, 74, 384-391.	0.7	105
47	Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 3103.	1.8	105
48	Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Experimental Neurology, 2007, 205, 547-562.	2.0	104
49	Retrospective study of a large population of patients with asymptomatic or minimally symptomatic raised serum creatine kinase levels. Journal of Neurology, 2002, 249, 305-311.	1.8	100
50	POLG mutations in sporadic mitochondrial disorders with multiple mtDNA deletions. Human Mutation, 2003, 22, 498-499.	1.1	100
51	24 Month Longitudinal Data in Ambulant Boys with Duchenne Muscular Dystrophy. PLoS ONE, 2013, 8, e52512.	1.1	99
52	Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain, 2010, 133, 465-481.	3.7	98
53	Long Term Natural History Data in Ambulant Boys with Duchenne Muscular Dystrophy: 36-Month Changes. PLoS ONE, 2014, 9, e108205.	1.1	98
54	Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Human Molecular Genetics, 2014, 23, 342-354.	1.4	97

#	Article	IF	CITATIONS
55	Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurology, The, 2017, 16, 513-522.	4.9	95
56	<i>TARDBP</i> (TDPâ€43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. European Journal of Neurology, 2009, 16, 727-732.	1.7	93
57	The genetic basis of undiagnosed muscular dystrophies and myopathies. Neurology, 2016, 87, 71-76.	1.5	92
58	Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Human Molecular Genetics, 2006, 15, 167-187.	1.4	90
59	Muscle mitochondrial DNA deletion and 31P-NMR spectroscopy alterations in a migraine patient. Journal of the Neurological Sciences, 1991, 104, 182-189.	0.3	89
60	Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurology, The, 2022, 21, 42-52.	4.9	89
61	Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. Journal of Neuroscience Research, 2002, 70, 721-733.	1.3	86
62	Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1239-1243.	0.9	86
63	The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle and Nerve, 2017, 55, 55-68.	1.0	86
64	A clinical, genetic, and biochemical characterization of <i>SPG7</i> mutations in a large cohort of patients with hereditary spastic paraplegia. Human Mutation, 2008, 29, 522-531.	1.1	85
65	Mitochondrial Fusion Proteins and Human Diseases. Neurology Research International, 2013, 2013, 1-11.	0.5	85
66	A Third Locus Predisposing to Multiple Deletions of mtDNA in Autosomal Dominant Progressive External Ophthalmoplegia. American Journal of Human Genetics, 1999, 65, 256-260.	2.6	82
67	Abdominal volume contribution to tidal volume as an early indicator of respiratory impairment in Duchenne muscular dystrophy. European Respiratory Journal, 2010, 35, 1118-1125.	3.1	82
68	Growth factors in ischemic stroke. Journal of Cellular and Molecular Medicine, 2011, 15, 1645-1687.	1.6	81
69	Importance of <i>SPP1</i> genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology, 2012, 79, 159-162.	1.5	81
70	Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions. Brain, 2012, 135, 3404-3415.	3.7	81
71	Mutated mitofusin 2 presents with intrafamilial variability and brain mitochondrial dysfunction. Neurology, 2008, 71, 1959-1966.	1.5	80
72	MotorPlex provides accurate variant detection across large muscle genes both in single myopathic patients and in pools of DNA samples. Acta Neuropathologica Communications, 2014, 2, 100.	2.4	76

#	Article	IF	CITATIONS
73	The apolipoprotein E ϵ4 allele causes a faster decline of cognitive performances in Down's syndrome subjects. Journal of the Neurological Sciences, 1997, 145, 87-91.	0.3	75
74	Prevalence of congenital muscular dystrophy in Italy. Neurology, 2015, 84, 904-911.	1.5	75
75	C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiology of Aging, 2012, 33, 2528.e7-2528.e14.	1.5	74
76	<i>Ubiquilin 2</i> mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 183-187.	0.9	74
77	Molecular Therapeutic Strategies for Spinal Muscular Atrophies: Current and Future Clinical Trials. Clinical Therapeutics, 2014, 36, 128-140.	1.1	74
78	<i>TARDBP</i> Mutations in Frontotemporal Lobar Degeneration: Frequency, Clinical Features, and Disease Course. Rejuvenation Research, 2010, 13, 509-517.	0.9	73
79	Modulated Generation of Neuronal Cells from Bone Marrow by Expansion and Mobilization of Circulating Stem Cells with in Vivo Cytokine Treatment. Experimental Neurology, 2002, 177, 443-452.	2.0	71
80	Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cellular and Molecular Life Sciences, 2010, 67, 3837-3847.	2.4	71
81	A Subpopulation of Murine Bone Marrow Cells Fully Differentiates along the Myogenic Pathway and Participates in Muscle Repair in the mdx Dystrophic Mouse. Experimental Cell Research, 2002, 277, 74-85.	1.2	70
82	Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype. Journal of Medical Genetics, 2009, 46, 840-846.	1.5	70
83	Interpreting Genetic Variants in Titin in Patients With Muscle Disorders. JAMA Neurology, 2018, 75, 557.	4.5	69
84	A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology, 2003, 60, 1857-1861.	1.5	68
85	Redefining phenotypes associated with mitochondrial DNA single deletion. Journal of Neurology, 2015, 262, 1301-1309.	1.8	68
86	Genome-Wide Identification of Susceptibility Alleles for Viral Infections through a Population Genetics Approach. PLoS Genetics, 2010, 6, e1000849.	1.5	67
87	Loss of Dp140 regulatory sequences is associated with cognitive impairment in dystrophinopathies. Neuromuscular Disorders, 2000, 10, 194-199.	0.3	66
88	Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on non-coding sequences. Human Molecular Genetics, 2005, 14, 2533-2546.	1.4	66
89	Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 3782-3796.	1.4	66
90	Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Human Mutation, 2005, 26, 283-283.	1.1	65

СІАСОМО Р СОМІ

#	Article	IF	CITATIONS
91	Multipotentiality, homing properties, and pyramidal neurogenesis of CNSâ€derived LeX(sseaâ€1) + /CXCR4 + stem cells. FASEB Journal, 2005, 19, 1860-1862.	0.2	65
92	6 Minute Walk Test in Duchenne MD Patients with Different Mutations: 12 Month Changes. PLoS ONE, 2014, 9, e83400.	1.1	65
93	A New Mitochondrial DNA Mutation in ND3 Gene Causing Severe Leigh Syndrome with Early Lethality. Pediatric Research, 2004, 55, 842-846.	1.1	64
94	New Mutations in TK2 Gene Associated With Mitochondrial DNA Depletion. Pediatric Neurology, 2006, 34, 177-185.	1.0	63
95	Inclusion body myopathy and frontotemporal dementia caused by a novel VCP mutation. Neurobiology of Aging, 2009, 30, 752-758.	1.5	63
96	Coexistence of CMT-2D and distal SMA-V phenotypes in an Italian family with a GARS gene mutation. Neurology, 2006, 66, 752-754.	1.5	62
97	Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an <i>in vitro</i> model and for therapy of muscular dystrophies. Journal of Cellular and Molecular Medicine, 2012, 16, 1353-1364.	1.6	61
98	The signature of long-standing balancing selection at the human defensin β-1 promoter. Genome Biology, 2008, 9, R143.	13.9	60
99	The landscape of human genes involved in the immune response to parasitic worms. BMC Evolutionary Biology, 2010, 10, 264.	3.2	59
100	CHCHD10mutations in Italian patients with sporadic amyotrophic lateral sclerosis: Figure 1. Brain, 2015, 138, e372-e372.	3.7	59
101	Population Genetics of IFIH1: Ancient Population Structure, Local Selection, and Implications for Susceptibility to Type 1 Diabetes. Molecular Biology and Evolution, 2010, 27, 2555-2566.	3.5	58
102	Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. American Journal of Human Genetics, 2017, 101, 525-538.	2.6	58
103	Genetic Modifiers of Duchenne Muscular Dystrophy and Dilated Cardiomyopathy. PLoS ONE, 2015, 10, e0141240.	1.1	58
104	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	4.5	57
105	Metformin overdose causes platelet mitochondrial dysfunction in humans. Critical Care, 2012, 16, R180.	2.5	56
106	New motor outcome function measures in evaluation of Lateâ€Onset Pompe disease before and after enzyme replacement therapy. Muscle and Nerve, 2012, 45, 831-834.	1.0	56
107	Skeletal muscle differentiation potential of human adult bone marrow cells. Experimental Cell Research, 2004, 295, 66-78.	1.2	54
108	Is M129V of PRNP gene associated with Alzheimer's disease? A case-control study and a meta-analysis. Neurobiology of Aging, 2006, 27, 770.e1-770.e5.	1.5	54

#	Article	IF	CITATIONS
109	Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscular Disorders, 2012, 22, 934-943.	0.3	53
110	Ongoing therapeutic trials and outcome measures for Duchenne muscular dystrophy. Cellular and Molecular Life Sciences, 2013, 70, 4585-4602.	2.4	53
111	Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Molecular Neurobiology, 2018, 55, 6307-6318.	1.9	53
112	MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Scientific Reports, 2018, 8, 10105.	1.6	53
113	Chemotactic Factors Enhance Myogenic Cell Migration across an Endothelial Monolayer. Experimental Cell Research, 2001, 268, 36-44.	1.2	52
114	McArdle disease: the mutation spectrum ofPYGMin a large Italian cohort. Human Mutation, 2006, 27, 718-718.	1.1	52
115	Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Critical Care, 2012, 16, R75.	2.5	52
116	Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Experimental Neurology, 2011, 229, 214-225.	2.0	51
117	Both selective and neutral processes drive GC content evolution in the human genome. BMC Evolutionary Biology, 2008, 8, 99.	3.2	50
118	LOPED study: looking for an early diagnosis in a late-onset Pompe disease high-risk population. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2014-310164.	0.9	50
119	The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study. Frontiers in Genetics, 2020, 11, 131.	1.1	49
120	Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opinion on Therapeutic Targets, 2020, 24, 295-310.	1.5	49
121	Intragenic Inversion of mtDNA: A New Type of Pathogenic Mutation in a Patient with Mitochondrial Myopathy. American Journal of Human Genetics, 2000, 66, 1900-1904.	2.6	48
122	Skeletal muscle gene expression profiling in mitochondrial disorders. FASEB Journal, 2005, 19, 1-30.	0.2	48
123	Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: Boundaries and contiguities. Clinica Chimica Acta, 2005, 361, 54-79.	0.5	48
124	Antisense Oligonucleotide Therapy for the Treatment of C9ORF72 ALS/FTD Diseases. Molecular Neurobiology, 2014, 50, 721-732.	1.9	48
125	Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice. Annals of Neurology, 2007, 62, 81-92.	2.8	47
126	Diagnostic and Prognostic Role of Blood and Cerebrospinal Fluid and Blood Neurofilaments in Amyotrophic Lateral Sclerosis: A Review of the Literature. International Journal of Molecular Sciences, 2019, 20, 4152.	1.8	47

#	Article	IF	CITATIONS
127	Long-term natural history data in Duchenne muscular dystrophy ambulant patients with mutations amenable to skip exons 44, 45, 51 and 53. PLoS ONE, 2019, 14, e0218683.	1.1	47
128	Nusinersen treatment and cerebrospinal fluid neurofilaments: An explorative study on Spinal Muscular Atrophy type 3 patients. Journal of Cellular and Molecular Medicine, 2020, 24, 3034-3039.	1.6	47
129	A third of LGMD2A biopsies have normal calpain 3 proteolytic activity as determined by an in vitro assay. Neuromuscular Disorders, 2007, 17, 148-156.	0.3	46
130	Clinical features and new molecular findings in Carnitine Palmitoyltransferase II (CPT II) deficiency. Journal of the Neurological Sciences, 2008, 266, 97-103.	0.3	46
131	Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site. Pediatric Neurology, 2011, 45, 292-299.	1.0	46
132	Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy. Stem Cell Reports, 2018, 11, 1185-1198.	2.3	46
133	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
134	A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis. PLoS ONE, 2012, 7, e29931.	1.1	46
135	Retrospective study of a large population of patients affected with mitochondrial disorders: clinical, morphological and molecular genetic evaluation. Journal of Neurology, 2001, 248, 778-788.	1.8	45
136	Molecular analysis of LGMD-2B and MM patients: identification of novel DYSF mutations and possible founder effect in the Italian population. Neuromuscular Disorders, 2003, 13, 788-795.	0.3	45
137	Novel Twinkle (PEO1) gene mutations in mendelian progressive external ophthalmoplegia. Journal of Neurology, 2008, 255, 1384-1391.	1.8	45
138	Screening for later-onset Pompe's disease in patients with paucisymptomatic hyperCKemia. Molecular Genetics and Metabolism, 2013, 109, 171-173.	0.5	45
139	New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy. Brain, 2020, 143, 2696-2708.	3.7	45
140	Effect of Combined Systemic and Local Morpholino Treatment on the Spinal Muscular Atrophy Δ7 Mouse Model Phenotype. Clinical Therapeutics, 2014, 36, 340-356.e5.	1.1	44
141	TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations. Journal of Neurology, 2015, 262, 1376-1378.	1.8	44
142	TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in InÂVitro Models. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 759-788.	2.3	44
143	Focal cognitive impairment in mitochondrial encephalomyopathies: a neuropsychological and neuroimaging study. Journal of the Neurological Sciences, 1999, 170, 57-63.	0.3	43
144	DMD Trp3X nonsense mutation associated with a founder effect in North American families with mild Becker muscular dystrophy. Neuromuscular Disorders, 2009, 19, 743-748.	0.3	43

#	Article	IF	CITATIONS
145	Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients. Journal of the Neurological Sciences, 2002, 202, 85-91.	0.3	42
146	An Evolutionary Analysis of Antigen Processing and Presentation across Different Timescales Reveals Pervasive Selection. PLoS Genetics, 2014, 10, e1004189.	1.5	42
147	Diagnosis of Duchenne Muscular Dystrophy in Italy in the last decade: Critical issues and areas for improvements. Neuromuscular Disorders, 2017, 27, 447-451.	0.3	42
148	Extracellular vesicles and amyotrophic lateral sclerosis: from misfolded protein vehicles to promising clinical biomarkers. Cellular and Molecular Life Sciences, 2021, 78, 561-572.	2.4	42
149	Neuronal Differentiation of Murine Bone Marrow Thy-1- and Sca-1-Positive Cells. Journal of Hematotherapy and Stem Cell Research, 2003, 12, 727-734.	1.8	41
150	Absence of angiogenic genes modification in Italian ALS patients. Neurobiology of Aging, 2008, 29, 314-316.	1.5	41
151	Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and cardiogenic shock. Critical Care, 2015, 19, 39.	2.5	41
152	Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Human Molecular Genetics, 2016, 25, 4266-4281.	1.4	41
153	Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy. Journal of Comparative Effectiveness Research, 2020, 9, 973-984.	0.6	41
154	Multiple deletions of mitochondrial DNA in sporadic and atypical cases of encephalomyopathy. Journal of the Neurological Sciences, 1994, 123, 74-79.	0.3	40
155	High mutational burden in the mtDNA control region from aged muscles: a single-fiber study. Neurobiology of Aging, 2003, 24, 829-838.	1.5	40
156	Intron size in mammals: complexity comes to terms with economy. Trends in Genetics, 2007, 23, 20-24.	2.9	40
157	Mitochondrial DNA G8363A mutation in the tRNALys gene: Clinical, biochemical and pathological study. Journal of the Neurological Sciences, 2009, 281, 85-92.	0.3	40
158	Nitric oxide donor and non steroidal anti inflammatory drugs as a therapy for muscular dystrophies: Evidence from a safety study with pilot efficacy measures in adult dystrophic patients. Pharmacological Research, 2012, 65, 472-479.	3.1	40
159	Novel mutations at a CpG dinucleotide in the ryanodine receptor in malignant hyperthermia. , 1998, 11, 45-50.		39
160	Eight Novel Mutations in SPG4 in a Large Sample of Patients With Hereditary Spastic Paraplegia. Archives of Neurology, 2006, 63, 750.	4.9	39
161	Induced neural stem cells: Methods of reprogramming and potential therapeutic applications. Progress in Neurobiology, 2014, 114, 15-24.	2.8	39
162	Histologic muscular history in steroid-treated and untreated patients with Duchenne dystrophy. Neurology, 2015, 85, 1886-1893.	1.5	39

#	Article	IF	CITATIONS
163	R-Loops in Motor Neuron Diseases. Molecular Neurobiology, 2019, 56, 2579-2589.	1.9	39
164	Congenital myopathy associated with abnormal accumulation of desmin and dystrophin. Neuromuscular Disorders, 1992, 2, 169-175.	0.3	38
165	Hepatic and neuromuscular forms of glycogenosis type III: nine mutations inAGL. Human Mutation, 2006, 27, 600-601.	1.1	38
166	SPG11: a consistent clinical phenotype in a family with homozygous Spatacsin truncating mutation. Neurogenetics, 2007, 8, 301-305.	0.7	38
167	Fatigue and exercise intolerance in mitochondrial diseases. Literature revision and experience of the Italian Network of mitochondrial diseases. Neuromuscular Disorders, 2012, 22, S226-S229.	0.3	38
168	Familial idiopathic hyper-CK-emia: An underrecognized condition. Muscle and Nerve, 2006, 33, 760-765.	1.0	37
169	Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Scientific Reports, 2015, 5, 11746.	1.6	37
170	"Mitochondrial neuropathies― A survey from the large cohort of the Italian Network. Neuromuscular Disorders, 2016, 26, 272-276.	0.3	37
171	Muscle glucose-6-phosphate dehydrogenase deficiency. Journal of Neurology, 1989, 236, 193-198.	1.8	36
172	Influence of the Glu298Asp polymorphism of NOS3 on age at onset and homocysteine levels in AD patients. Neurobiology of Aging, 2005, 26, 789-794.	1.5	36
173	Preconditioning and Cellular Engineering to Increase the Survival of Transplanted Neural Stem Cells for Motor Neuron Disease Therapy. Molecular Neurobiology, 2019, 56, 3356-3367.	1.9	36
174	Genetic modifiers of respiratory function in Duchenne muscular dystrophy. Annals of Clinical and Translational Neurology, 2020, 7, 786-798.	1.7	36
175	Neuronal Generation from Somatic Stem Cells: Current Knowledge and Perspectives on the Treatment of Acquired and Degenerative Central Nervous System Disorders. Current Gene Therapy, 2003, 3, 247-272.	0.9	36
176	Clinical and genetic variability of glycogen storage disease type IIIa: Seven novelAGL gene mutations in the mediterranean area. American Journal of Medical Genetics Part A, 2002, 109, 183-190.	2.4	35
177	Amyotrophic lateral sclerosis linked to a novel SOD1 mutation with muscle mitochondrial dysfunction. Journal of the Neurological Sciences, 2009, 276, 170-174.	0.3	35
178	Respiratory pattern in an adult population of dystrophic patients. Journal of the Neurological Sciences, 2011, 306, 54-61.	0.3	35
179	Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiology of Aging, 2013, 34, 1517.e9-1517.e10.	1.5	35
180	Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease?. Neurobiology of Disease, 2020, 140, 104870.	2.1	35

#	Article	IF	CITATIONS
181	VEGF gene variability and type 1 diabetes: evidence for a protective role. Immunogenetics, 2006, 58, 107-112.	1.2	34

Motoneuron Transplantation Rescues the Phenotype of SMARD1 (Spinal Muscular Atrophy with) Tj ETQq0 0 0 rgBT $_{1.2}^{1/2}$ verlock $_{34}^{10}$ Tf 50 7

183	Diverse Evolutionary Histories for Î ² -adrenoreceptor Genes in Humans. American Journal of Human Genetics, 2009, 85, 64-75.	2.6	34
184	VEGF genetic variability is associated with increased risk of developing Alzheimer's disease. Journal of the Neurological Sciences, 2009, 283, 66-68.	0.3	34
185	iPSC-Derived Neural Stem Cells Act via Kinase Inhibition to Exert Neuroprotective Effects in Spinal Muscular Atrophy with Respiratory DistressÂType 1. Stem Cell Reports, 2014, 3, 297-311.	2.3	34
186	Clinical Pregenetic Screening for Stroke Monogenic Diseases. Stroke, 2016, 47, 1702-1709.	1.0	34
187	Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. Journal of Neurology, 2021, 268, 1580-1591.	1.8	34
188	Primary beta-sarcoglycanopathy manifesting as recurrent exercise-induced myoglobinuria. Neuromuscular Disorders, 2001, 11, 389-394.	0.3	33
189	The dystrophin gene is alternatively spliced throughout its coding sequence. FEBS Letters, 2002, 517, 163-166.	1.3	33
190	Clinical, morphological and immunological evaluation of six patients with dysferlin deficiency. Acta Neuropathologica, 2003, 105, 537-542.	3.9	33
191	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728.	2.2	33
191 192	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078.	2.2 4.7	33 33
191 192 193	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078. Cardiac and Neuromuscular Features of Patients With <i>LMNA Kiternal Medicine, 2019, 171, 458.</i>	2.2 4.7 2.0	33 33 33
191 192 193 194	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078. Cardiac and Neuromuscular Features of Patients With <i>LMNA</i> Medicine, 2019, 171, 458. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. International Journal of Molecular Sciences, 2021, 22, 2659.	2.2 4.7 2.0 1.8	 33 33 33 33 33
191 192 193 194	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078. Cardiac and Neuromuscular Features of Patients With <i>LMNA</i> Related Cardiomyopathy. Annals of Internal Medicine, 2019, 171, 458. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. International Journal of Molecular Sciences, 2021, 22, 2659. Novel missense mutation and large deletion of GNE gene in autosomal-recessive inclusion-body myopathy. Muscle and Nerve, 2003, 28, 113-117.	2.2 4.7 2.0 1.8 1.0	 33 33 33 33 33 32
191 192 193 194 195 196	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078. Cardiac and Neuromuscular Features of Patients With <i>LMNA</i> -Related Cardiomyopathy. Annals of Internal Medicine, 2019, 171, 458. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. International Journal of Molecular Sciences, 2021, 22, 2659. Novel missense mutation and large deletion ofGNE gene in autosomal-recessive inclusion-body myopathy. Muscle and Nerve, 2003, 28, 113-117. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC Medical Genetics, 2011, 12, 37.	 2.2 4.7 2.0 1.8 1.0 2.1 	 33 33 33 33 32 32
 191 192 193 194 195 196 197 	Myoclonus in mitochondrial disorders. Movement Disorders, 2014, 29, 722-728. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078. Cardiac and Neuromuscular Features of Patients With <i>LMNA</i> related Cardiomyopathy. Annals of Internal Medicine, 2019, 171, 458. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. International Journal of Molecular Sciences, 2021, 22, 2659. Novel missense mutation and large deletion of GNE gene in autosomal-recessive inclusion-body myopathy. Muscle and Nerve, 2003, 28, 113-117. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC Medical Genetics, 2011, 12, 37. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cellular and Molecular Life Sciences, 2014, 71, 3257-3268.	2.2 4.7 2.0 1.8 1.0 2.1 2.4	 33 33 33 33 32 32 32

#	Article	IF	CITATIONS
199	Mitochondrial dysfunction in fibroblasts of Multiple System Atrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3588-3597.	1.8	32
200	Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983347.	1.5	32
201	MRI patterns of muscle involvement in type 2 and 3 spinal muscular atrophy patients. Journal of Neurology, 2020, 267, 898-912.	1.8	32
202	Low abdominal contribution to breathing as daytime predictor of nocturnal desaturation in adolescents and young adults with Duchenne Muscular Dystrophy. Respiratory Medicine, 2012, 106, 276-283.	1.3	31
203	Respiratory and cardiac function in congenital muscular dystrophies with alpha dystroglycan deficiency. Neuromuscular Disorders, 2012, 22, 685-689.	0.3	31
204	Riboflavin transporter 3 involvement in infantile Brown-Vialetto-Van Laere disease: two novel mutations. Journal of Medical Genetics, 2013, 50, 104-107.	1.5	31
205	Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons. Brain, 2019, 142, 276-294.	3.7	31
206	The role of protozoa-driven selection in shaping human genetic variability. Trends in Genetics, 2010, 26, 95-99.	2.9	30
207	Analysis of hnRNPA1, A2/B1, and A3 genes in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 2695.e11-2695.e12.	1.5	30
208	A 175 Million Year History of T Cell Regulatory Molecules Reveals Widespread Selection, with Adaptive Evolution of Disease Alleles. Immunity, 2013, 38, 1129-1141.	6.6	30
209	Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders. Molecular Neurobiology, 2017, 54, 4466-4476.	1.9	30
210	The 129 codon polymorphism of the Prion Protein gene influences earlier cognitive performance in Down syndrome subjects. Journal of Neurology, 2003, 250, 688-692.	1.8	29
211	Familial mtDNA T8993C transition causing both the NARP and the MILS phenotype in the same generation. Journal of Neurology, 2003, 250, 1498-1500.	1.8	28
212	Fixation of conserved sequences shapes human intron size and influences transposon-insertion dynamics. Trends in Genetics, 2005, 21, 484-488.	2.9	28
213	Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biology, 2006, 7, R120.	13.9	28
214	Crohn's Disease Loci Are Common Targets of Protozoa-Driven Selection. Molecular Biology and Evolution, 2013, 30, 1077-1087.	3.5	28
215	Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders. Genome Biology, 2014, 15, 499.	3.8	28
216	Glycogen storage disease type III: A novel Agl knockout mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2318-2328.	1.8	28

#	Article	IF	CITATIONS
217	A novel mitochondrial tRNA lle point mutation in chronic progressive external ophthalmoplegia. Journal of Neurology, 1998, 245, 755-758.	1.8	27
218	Absence of brain Dp140 isoform and cognitive impairment in Becker muscular dystrophy. Lancet, The, 1999, 353, 897-898.	6.3	27
219	Congenital muscular dystrophies with cognitive impairment. Neurology, 2010, 75, 898-903.	1.5	27
220	Incontinence in Late-Onset Pompe Disease: An Underdiagnosed Treatable Condition. European Neurology, 2012, 68, 75-78.	0.6	27
221	A Trans-Specific Polymorphism in ZC3HAV1 Is Maintained by Long-Standing Balancing Selection and May Confer Susceptibility to Multiple Sclerosis. Molecular Biology and Evolution, 2012, 29, 1599-1613.	3.5	27
222	iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models. Human Molecular Genetics, 2016, 25, 3152-3163.	1.4	27
223	Fibrosis Rescue Improves Cardiac Function in Dystrophin-Deficient Mice and Duchenne Patient–Specific Cardiomyocytes by Immunoproteasome Modulation. American Journal of Pathology, 2019, 189, 339-353.	1.9	27
224	Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of Transgene Persistence. Frontiers in Neurology, 2021, 12, 814174.	1.1	27
225	Glucose-6-Phosphate Dehydrogenase Lodi^844C: A Study on Its Expression in Blood Cells and Muscle. Enzyme, 1991, 45, 180-187.	0.7	26
226	A G+1->A transversion at the 5' splice site of intron 69 of the dystrophin gene causing the absence of peripheral nerve Dp 116 and severe clinical involvement in a DMD patient. Human Molecular Genetics, 1995, 4, 2171-2174.	1.4	26
227	An atypical case of partial merosin deficiency congenital muscular dystrophy. Journal of Neurology, 1997, 244, 391-395.	1.8	26
228	ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Progress in Neurobiology, 2011, 95, 133-148.	2.8	26
229	POLG1 mutations and stroke like episodes: a distinct clinical entity rather than an atypical MELAS syndrome. BMC Neurology, 2013, 13, 8.	0.8	26
230	The Brain is Hypothermic in Patients with Mitochondrial Diseases. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 915-920.	2.4	26
231	Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype. Scientific Reports, 2016, 6, 21301.	1.6	26
232	Rhabdomyolysis-Associated Acute Kidney Injury. American Journal of Kidney Diseases, 2018, 71, A12-A14.	2.1	26
233	The influence of coenzyme Q10 on total serum calcium concentration in two patients with kearns-sayre syndrome and hypoparathyroidism. Neuromuscular Disorders, 1996, 6, 49-53.	0.3	25
234	Sarcoglycan deficiency in a large Italian population of myopathic patients. Acta Neuropathologica, 1998, 96, 509-514.	3.9	25

#	Article	IF	CITATIONS
235	Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature. Genome Research, 2003, 13, 764-772.	2.4	25
236	Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability. International Journal of Molecular Sciences, 2015, 16, 18054-18076.	1.8	25
237	Mutational analysis of COQ2 in patients with MSA in Italy. Neurobiology of Aging, 2016, 45, 213.e1-213.e2.	1.5	25
238	Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis. Clinical Cancer Research, 2016, 22, 1274-1283.	3.2	25
239	Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy. Parkinsonism and Related Disorders, 2019, 63, 66-72.	1.1	25
240	Relevance of sequence and structure elements for deletion events in the dystrophin gene major hot-spot. Human Genetics, 2003, 112, 272-288.	1.8	24
241	Targeted gene panel screening is an effective tool to identify undiagnosed late onset Pompe disease. Neuromuscular Disorders, 2018, 28, 586-591.	0.3	24
242	Rescue of GSDIII Phenotype with Gene Transfer Requires Liver- and Muscle-Targeted GDE Expression. Molecular Therapy, 2018, 26, 890-901.	3.7	24
243	Advances, Challenges, and Perspectives in Translational Stem Cell Therapy for Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2019, 56, 6703-6715.	1.9	24
244	Micro <scp>RNA</scp> s as regulators of cell death mechanisms in amyotrophic lateral sclerosis. Journal of Cellular and Molecular Medicine, 2019, 23, 1647-1656.	1.6	24
245	Comparative Analysis of the Human Dystrophin and Utrophin Gene Structures. Genetics, 2002, 160, 793-798.	1.2	24
246	Estimating the impact of COVID-19 pandemic on services provided by Italian Neuromuscular Centers: an Italian Association of Myology survey of the acute phase. Acta Myologica, 2020, 39, 57-66.	1.5	24
247	Analysis of splicing parameters in the dystrophin gene: relevance for physiological and pathogenetic splicing mechanisms. Human Genetics, 2001, 109, 73-84.	1.8	23
248	Preliminary Evidence that VEGF Genetic Variability Confers Susceptibility to Frontotemporal Lobar Degeneration. Rejuvenation Research, 2008, 11, 773-780.	0.9	23
249	Neuropathological study of skeletal muscle, heart, liver, and brain in a neonatal form of glycogen storage disease type IV associated with a new mutation in <i>GBE1</i> gene. Journal of Inherited Metabolic Disease, 2009, 32, 161-168.	1.7	23
250	New molecular findings in congenital myopathies due to selenoprotein N gene mutations. Journal of the Neurological Sciences, 2011, 300, 107-113.	0.3	23
251	Balancing selection is common in the extended MHC region but most alleles with opposite risk profile for autoimmune diseases are neutrally evolving. BMC Evolutionary Biology, 2011, 11, 171.	3.2	23
252	Extended phenotype description and new molecular findings in late onset glycogen storage disease type II: a northern Italy population study and review of the literature. Journal of Neurology, 2014, 261, 83-97.	1.8	23

#	Article	IF	CITATIONS
253	6-[18F]Fluoro-l-dihydroxyphenylalanine metabolism and positron emission tomography aftercatechol-O-methyltransferase inhibition in normal and hemiparkinsonian monkeys. Brain Research, 1993, 626, 1-13.	1.1	22
254	Chronic progressive external ophthalmoplegia: A correlative study of quantitative molecular data and histochemical and biochemical profile. Journal of the Neurological Sciences, 1994, 123, 140-146.	0.3	22
255	Searching for genes affecting the structural integrity of the mitochondrial genome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1271, 153-158.	1.8	22
256	Asymptomatic familial hyperCKemia associated with desmin accumulation in skeletal muscle. Journal of the Neurological Sciences, 1996, 140, 132-136.	0.3	22
257	Follow-up of a large population of asymptomatic/oligosymptomatic hyperckemic subjects. Journal of Neurology, 2006, 253, 1399-1403.	1.8	22
258	Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. Journal of the Neurological Sciences, 2012, 318, 65-71.	0.3	22
259	Molecular and biochemical characterization of Tunisian patients with glycogen storage disease type III. Journal of Human Genetics, 2012, 57, 170-175.	1.1	22
260	Mitochondrial Changes in Platelets Are Not Related to Those in Skeletal Muscle during Human Septic Shock. PLoS ONE, 2014, 9, e96205.	1.1	22
261	A novel homozygous PLA2G6 mutation causes dystonia-parkinsonism. Parkinsonism and Related Disorders, 2015, 21, 337-339.	1.1	22
262	Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown–Vialetto disease that is partially rescued by riboflavin. Scientific Reports, 2017, 7, 46271.	1.6	22
263	A population genetics study of the Familial Mediterranean Fever gene: evidence of balancing selection under an overdominance regime. Genes and Immunity, 2009, 10, 678-686.	2.2	21
264	Optic atrophy plus phenotype due to mutations in the OPA1 gene: Two more Italian families. Journal of the Neurological Sciences, 2012, 315, 146-149.	0.3	21
265	Lower motor neuron disease with respiratory failure caused by a novel <i>MAPT</i> mutation. Neurology, 2014, 82, 1990-1998.	1.5	21
266	The Length of SNCA Rep1 Microsatellite May Influence Cognitive Evolution in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 213.	1.1	21
267	Spinal muscular atrophy with respiratory distress type 1: Clinical phenotypes, molecular pathogenesis and therapeutic insights. Journal of Cellular and Molecular Medicine, 2020, 24, 1169-1178.	1.6	21
268	Transcriptional activation of the non-muscle, full-length dystrophin isoforms in Duchenne muscular dystrophy skeletal muscle. Journal of the Neurological Sciences, 2001, 186, 51-57.	0.3	20
269	DPP6 gene variability confers increased risk of developing sporadic amyotrophic lateral sclerosis in Italian patients. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 1085-1085.	0.9	20
270	Identification of a new susceptibility variant for multiple sclerosis in OAS1 by population genetics analysis. Human Genetics, 2012, 131, 87-97.	1.8	20

#	Article	IF	CITATIONS
271	Direct Reprogramming of Adult Somatic Cells into other Lineages: Past Evidence and Future Perspectives. Cell Transplantation, 2013, 22, 921-944.	1.2	20
272	Molecular, genetic and stem cellâ€mediated therapeutic strategies for spinal muscular atrophy (<scp>SMA</scp>). Journal of Cellular and Molecular Medicine, 2014, 18, 187-196.	1.6	20
273	Stormorken Syndrome Caused by a p.R304W STIM1 Mutation: The First Italian Patient and a Review of the Literature. Frontiers in Neurology, 2018, 9, 859.	1.1	20
274	Disease Modeling and Therapeutic Strategies in CMT2A: State of the Art. Molecular Neurobiology, 2019, 56, 6460-6471.	1.9	20
275	A collection of 33 novel human mtDNA homoplasmic variants. Human Mutation, 2002, 20, 409-409.	1.1	19
276	Mitochondrial A12308G polymorphism affects clinical features in patients with single mtDNA macrodeletion. European Journal of Human Genetics, 2003, 11, 896-898.	1.4	19
277	An intragenic deletion/inversion event in the DMD gene determines a novel exon creation and results in a BMD phenotype. Human Genetics, 2004, 115, 13-18.	1.8	19
278	Unusual adult-onset Leigh syndrome presentation due to the mitochondrial m.9176T>C mutation. Biochemical and Biophysical Research Communications, 2011, 412, 245-248.	1.0	19
279	Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2012, 69, 1641-1650.	2.4	19
280	Lipomatosis Incidence and Characteristics in an Italian Cohort of Mitochondrial Patients. Frontiers in Neurology, 2019, 10, 160.	1.1	19
281	Multiple sclerosis and mitochondrial myopathy: An unusual combination of diseases. Journal of Neurology, 1994, 241, 511-516.	1.8	18
282	No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort. Neurobiology of Aging, 2011, 32, 1157-1158.	1.5	18
283	Clinical and molecular features of an infant patient affected by Leigh Disease associated to m.14459G > A mitochondrial DNA mutation: a case report. BMC Neurology, 2011, 11, 85.	0.8	18
284	Molecular research technologies in mitochondrial diseases: The microarray approach. IUBMB Life, 2005, 57, 811-818.	1.5	17
285	A region in the dystrophin gene major hot spot harbors a cluster of deletion breakpoints and generates doubleâ€strand breaks in yeast. FASEB Journal, 2006, 20, 1910-1912.	0.2	17
286	Cosegregation of novel mitochondrial 16S rRNA gene mutations with the age-associated T414G variant in human cybrids. Nucleic Acids Research, 2008, 36, 5872-5881.	6.5	17
287	Effect of steroid treatment in cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 95-96.	0.9	17
288	Genetic Background Predicts Poor Prognosis in Frontotemporal Lobar Degeneration. Neurodegenerative Diseases, 2011, 8, 289-295.	0.8	17

#	Article	IF	CITATIONS
289	Mutational analysis of VCP gene in familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 630.e1-630.e2.	1.5	17
290	New Mutations in NEB Gene Discovered by Targeted Next-Generation Sequencing in Nemaline Myopathy Italian Patients. Journal of Molecular Neuroscience, 2016, 59, 351-359.	1.1	17
291	Longitudinal follow-up and muscle MRI pattern of two siblings with polyglucosan body myopathy due to glycogenin-1 mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 797-800.	0.9	17
292	Can Intestinal Pseudo-Obstruction Drive Recurrent Stroke-Like Episodes in Late-Onset MELAS Syndrome? A Case Report and Review of the Literature. Frontiers in Neurology, 2019, 10, 38.	1.1	17
293	Molecular Approaches for the Treatment of Pompe Disease. Molecular Neurobiology, 2020, 57, 1259-1280.	1.9	17
294	Trans -acting factors may cause dystrophin splicing misregulation in BMD skeletal muscles. FEBS Letters, 2003, 537, 30-34.	1.3	16
295	Improvement of Combined FISH and Immunofluorescence to Trace the Fate of Somatic Stem Cells after Transplantation. Journal of Histochemistry and Cytochemistry, 2004, 52, 1333-1339.	1.3	16
296	Developmental and tissue-specific regulation of a novel dysferlin isoform. Muscle and Nerve, 2004, 30, 366-374.	1.0	16
297	SLC25A46 mutations in patients with Parkinson's Disease and optic atrophy. Parkinsonism and Related Disorders, 2020, 74, 1-5.	1.1	16
298	Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	16
299	Somatic stem cell research for neural repair: current evidence and emerging perspectives. Journal of Cellular and Molecular Medicine, 2004, 8, 329-337.	1.6	15
300	A case of CPT deficiency, homoplasmic mtDNA mutation and ragged red fibers at muscle biopsy. Journal of the Neurological Sciences, 2005, 239, 21-24.	0.3	15
301	Parkin polymorphisms and environmental exposure: Decrease in age at onset of Parkinson's disease. NeuroToxicology, 2007, 28, 698-701.	1.4	15
302	A de novo C19orf12 heterozygous mutation in a patient with MPAN. Parkinsonism and Related Disorders, 2018, 48, 109-111.	1.1	15
303	The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Human Mutation, 2018, 39, 1273-1283.	1.1	15
304	Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscular Disorders, 2020, 30, 959-969.	0.3	15
305	Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance. Ageing Research Reviews, 2022, 76, 101578.	5.0	15
306	Appearance and localization of dystrophin in normal human fetal muscle. International Journal of Developmental Neuroscience, 1991, 9, 607-612.	0.7	14

#	Article	IF	CITATIONS
307	Multiple deletions of mitochondrial DNA in a patient with periodic attacks of paralysis. Journal of the Neurological Sciences, 1993, 117, 24-27.	0.3	14
308	Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 122-124.	2.3	14
309	Sodium Bicarbonate Treatment during Transient or Sustained Lactic Acidemia in Normoxic and Normotensive Rats. PLoS ONE, 2012, 7, e46035.	1.1	14
310	Adult Polyglucosan Body Disease: Clinical and histological heterogeneity of a large Italian family. Neuromuscular Disorders, 2015, 25, 423-428.	0.3	14
311	Novel donor splice site mutations of AGL gene in glycogen storage disease type IIIa. Journal of Inherited Metabolic Disease, 1999, 22, 762-763.	1.7	13
312	Leigh Disease: Clinical, Neuroradiologic, and Biochemical Study of Three New Cases With Cytochrome c Oxidase Deficiency. Journal of Child Neurology, 2001, 16, 608-613.	0.7	13
313	Over-representation of exonic splicing enhancers in human intronless genes suggests multiple functions in mRNA processing. Biochemical and Biophysical Research Communications, 2004, 322, 470-476.	1.0	13
314	Polymorphisms in the CPB2 Gene Are Maintained by Balancing Selection and Result in Haplotype-Preferential Splicing of Exon 7. Molecular Biology and Evolution, 2010, 27, 1945-1954.	3.5	13
315	Postural effects on lung and chest wall volumes in late onset type II glycogenosis patients. Respiratory Physiology and Neurobiology, 2013, 186, 308-314.	0.7	13
316	Congenital Myasthenic Syndrome Due to Choline Acetyltransferase Mutations in Infants. Journal of Child Neurology, 2014, 29, 389-393.	0.7	13
317	Novel mutations in DNA2 associated with myopathy and mtDNA instability. Annals of Clinical and Translational Neurology, 2019, 6, 1893-1899.	1.7	13
318	Muscle MRI in two SMA patients on nusinersen treatment: A two years follow-up. Journal of the Neurological Sciences, 2020, 417, 117067.	0.3	13
319	Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cellular and Molecular Life Sciences, 2020, 77, 4299-4313.	2.4	13
320	A Novel Homozygous <scp><i>VPS11</i></scp> Variant May Cause Generalized Dystonia. Annals of Neurology, 2021, 89, 834-839.	2.8	13
321	Spinal muscular atrophy: state of the art and new therapeutic strategies. Neurological Sciences, 2022, 43, 615-624.	0.9	13
322	Utrophin expression during human fetal development. International Journal of Developmental Neuroscience, 1995, 13, 585-593.	0.7	12
323	Lack of apoptosis in patients with progressive external ophthalmoplegia and mutated adenine nucleotide translocator-1 gene. Muscle and Nerve, 2002, 26, 265-269.	1.0	12
324	Colocalization of ribonuclear inclusions with muscle blind like-proteins in a family with myotonic dystrophy type 2 associated with a short CCTG expansion. Journal of the Neurological Sciences, 2008, 275, 159-163.	0.3	12

#	Article	IF	CITATIONS
325	Role of VEGF gene variability in longevity: A lesson from the Italian population. Neurobiology of Aging, 2008, 29, 1917-1922.	1.5	12
326	A complex selection signature at the human AVPR1B gene. BMC Evolutionary Biology, 2009, 9, 123.	3.2	12
327	VEGF Haplotypes are Associated with Increased Risk to Progressive Supranuclear Palsy and Corticobasal Syndrome. Journal of Alzheimer's Disease, 2010, 21, 87-94.	1.2	12
328	Tyr78Phe Transthyretin Mutation with Predominant Motor Neuropathy as the Initial Presentation. Case Reports in Neurology, 2011, 3, 62-68.	0.3	12
329	A novel CCM1mutation associated with multiple cerebral and vertebral cavernous malformations. BMC Neurology, 2014, 14, 158.	0.8	12
330	The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3022-3037.	1.8	12
331	Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. Journal of Neuroscience Research, 2018, 96, 1576-1585.	1.3	12
332	Cell-penetrating peptide-conjugated Morpholino rescues SMA in a symptomatic preclinical model. Molecular Therapy, 2022, 30, 1288-1299.	3.7	12
333	Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cellular and Molecular Life Sciences, 2022, 79, 189.	2.4	12
334	Transplacental injection of somite-derived cells in mdx mouse embryos for the correction of dystrophin deficiency. Human Molecular Genetics, 2000, 9, 1843-1852.	1.4	11
335	An unusual presentation of Muscle–Eye–Brain disease: Severe eye abnormalities with mild muscle and brain involvement. Neuromuscular Disorders, 2009, 19, 692-695.	0.3	11
336	Adult polyglucosan body disease in a patient originally diagnosed with Fabry's disease. Neuromuscular Disorders, 2014, 24, 272-276.	0.3	11
337	Improvement of Endurance of DMD Animal Model Using Natural Polyphenols. BioMed Research International, 2015, 2015, 1-17.	0.9	11
338	Novel Splice-Site Mutation in SMN1 Associated with a very Severe SMA-I Phenotype. Journal of Molecular Neuroscience, 2015, 56, 212-215.	1.1	11
339	Neuromuscular excitability changes produced by sustained voluntary contraction and response to mexiletine in myotonia congenita. Neurophysiologie Clinique, 2017, 47, 247-252.	1.0	11
340	Mutations in TMEM230 are rare in autosomal dominant Parkinson's disease. Parkinsonism and Related Disorders, 2017, 39, 87-88.	1.1	11
341	A new case of limb girdle muscular dystrophy 2G in a Greek patient, founder effect and review of the literature. Neuromuscular Disorders, 2018, 28, 532-537.	0.3	11
342	Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cellular and Molecular Life Sciences, 2020, 77, 3351-3367.	2.4	11

#	Article	IF	CITATIONS
343	Revised Genetic Classification of Limb Girdle Muscular Dystrophies. Current Molecular Medicine, 2014, 14, 934-943.	0.6	11
344	Muscle histological changes in a large cohort of patients affected with Becker muscular dystrophy. Acta Neuropathologica Communications, 2022, 10, 48.	2.4	11
345	Extracorporeal Circulation as a New Experimental Pathway for Myoblast Implantation in mdx Mice. Cell Transplantation, 1999, 8, 247-258.	1.2	10
346	Variants in SNAP25 are targets of natural selection and influence verbal performances in women. Cellular and Molecular Life Sciences, 2012, 69, 1705-1715.	2.4	10
347	ISPD mutations account for a small proportion of Italian Limb Girdle Muscular Dystrophy cases. BMC Neurology, 2015, 15, 172.	0.8	10
348	Dystoniaâ€ataxia syndrome with permanent torsional nystagmus caused by ECHS1 deficiency. Annals of Clinical and Translational Neurology, 2020, 7, 839-845.	1.7	10
349	Primary mitochondrial myopathy. Neurology: Genetics, 2020, 6, e519.	0.9	10
350	<i>MYH2</i> myopathy, a new case expands the clinical and pathological spectrum of the recessive form. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1320.	0.6	10
351	Diagnostic and prognostic value of CSF neurofilaments in a cohort of patients with motor neuron disease: A crossâ€sectional study. Journal of Cellular and Molecular Medicine, 2021, 25, 3765-3771.	1.6	10
352	Clinical and genetic features of a cohort of patients with MFN2-related neuropathy. Scientific Reports, 2022, 12, 6181.	1.6	10
353	In Vitro and In Vivo Tetracycline-Controlled Myogenic Conversion of NIH-3T3 Cells: Evidence of Programmed Cell Death after Muscle Cell Transplantation. Cell Transplantation, 2001, 10, 209-221.	1.2	9
354	Identification of the infant-type R631C mutation in patients with the benign muscular form of CPT2 deficiency. Neuromuscular Disorders, 2007, 17, 960-963.	0.3	9
355	Spinal Cord Calcification in an Early-Onset Progressive Leukoencephalopathy. Journal of Child Neurology, 2011, 26, 876-880.	0.7	9
356	Loss of the nucleoporin Aladin in central nervous system and fibroblasts of Allgrove Syndrome. Human Molecular Genetics, 2019, 28, 3921-3927.	1.4	9
357	Muscle pain in mitochondrial diseases: a picture from the Italian network. Journal of Neurology, 2019, 266, 953-959.	1.8	9
358	Anti-MAG IgM: differences in antibody tests and correlation with clinical findings. Neurological Sciences, 2020, 41, 365-372.	0.9	9
359	Stathmins and Motor Neuron Diseases: Pathophysiology and Therapeutic Targets. Biomedicines, 2022, 10, 711.	1.4	9
360	Duplication of dystrophin gene and dissimilar clinical phenotype in the same family. Neuromuscular Disorders, 1995, 5, 475-481.	0.3	8

#	Article	IF	CITATIONS
361	Down's syndrome fibroblasts anticipate the accumulation of specific ageing-related mtDNA mutations. Annals of Neurology, 2001, 49, 137-138.	2.8	8
362	Mitochondrial-DNA nucleotides G4298A and T10010C as pathogenic mutations: the confirmation in two new cases. Mitochondrion, 2004, 3, 279-283.	1.6	8
363	In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Molecular Biology Reports, 2014, 41, 2865-2874.	1.0	8
364	Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy. International Journal of Molecular Sciences, 2018, 19, 167.	1.8	8
365	CSF transplantation of a specific iPSC-derived neural stem cell subpopulation ameliorates the disease phenotype in a mouse model of spinal muscular atrophy with respiratory distress type 1. Experimental Neurology, 2019, 321, 113041.	2.0	8
366	Hereditary hemorrhagic telangiectasia associated with cortical development malformation due to a start loss mutation in ENG. BMC Neurology, 2020, 20, 316.	0.8	8
367	Massive cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia. Haematologica, 2021, 106, 3021-3024.	1.7	8
368	VPS13C-associated Parkinson's disease: Two novel cases and review of the literature. Parkinsonism and Related Disorders, 2022, 94, 37-39.	1.1	8
369	Characterization of patients with Becker muscular dystrophy by histology, magnetic resonance imaging, function, and strength assessments. Muscle and Nerve, 2022, 65, 326-333.	1.0	8
370	Metabolic and drug-induced muscle disorders. Current Opinion in Neurology, 2002, 15, 533-538.	1.8	7
371	Genetic variability in the ACE gene region surrounding the Alu I/D polymorphism is maintained by balancing selection in human populations. Pharmacogenetics and Genomics, 2010, 20, 131-134.	0.7	7
372	Two novel mutations in PEO1 (Twinkle) gene associated with chronic external ophthalmoplegia. Journal of the Neurological Sciences, 2011, 308, 173-176.	0.3	7
373	Long-Standing Balancing Selection in the <i>THBS4</i> Gene: Influence on Sex-Specific Brain Expression and Gray Matter Volumes in Alzheimer Disease. Human Mutation, 2013, 34, 743-753.	1.1	7
374	Growing Evidence about the Relationship between Vessel Dissection and Scuba Diving. Case Reports in Neurology, 2013, 5, 155-161.	0.3	7
375	Asymptomatic Pompe disease: Can muscle magnetic resonance imaging facilitate diagnosis?. Muscle and Nerve, 2016, 53, 326-327.	1.0	7
376	Copy Number Variants Account for a Tiny Fraction of Undiagnosed Myopathic Patients. Genes, 2018, 9, 524.	1.0	7
377	Impact of <scp>COVIDâ€19</scp> on the quality of life of patients with neuromuscular disorders in the <scp>L</scp> ombardy area, <scp>I</scp> taly. Muscle and Nerve, 2021, 64, 474-482.	1.0	7
378	Congenital muscular dystrophy with muscle inflammation alpha dystroglycan glycosylation defect and no mutation in FKRP gene. Journal of the Neurological Sciences, 2006, 243, 47-51.	0.3	6

#	Article	IF	CITATIONS
379	Language Disturbances in a Group of Participants Suffering from Duchenne Muscular Dystrophy: A Pilot Study. Perceptual and Motor Skills, 2007, 104, 663-676.	0.6	6
380	Acute rhabdomyolysis induced by tonic–clonic epileptic seizures in a patient with glucose-6-phosphate dehydrogenase deficiency. Journal of Neurology, 2013, 260, 2669-2671.	1.8	6
381	Central Nervous System Involvement in Common Variable Immunodeficiency: A Case of Acute Unilateral Optic Neuritis in a 26-Year-Old Italian Patient. Frontiers in Neurology, 2018, 9, 1031.	1.1	6
382	Bilateral Cavernous Carotid Aneurysms: Atypical Presentation of a Rare Cause of Mass Effect. A Case Report and a Review of the Literature. Frontiers in Neurology, 2018, 9, 619.	1.1	6
383	Animal Models of CMT2A: State-of-art and Therapeutic Implications. Molecular Neurobiology, 2020, 57, 5121-5129.	1.9	6
384	TYMP Variants Result in Late-Onset Mitochondrial Myopathy With Altered Muscle Mitochondrial DNA Homeostasis. Frontiers in Genetics, 2020, 11, 860.	1.1	6
385	Pediatric anti-HMGCR necrotizing myopathy: diagnostic challenges and literature review. Neurological Sciences, 2020, 41, 3009-3013.	0.9	6
386	Missense mutations in small muscle protein X-linked (SMPX) cause distal myopathy with protein inclusions. Acta Neuropathologica, 2021, 142, 375-393.	3.9	6
387	North Star Ambulatory Assessment changes in ambulant Duchenne boys amenable to skip exons 44, 45, 51, and 53: A 3 year follow up. PLoS ONE, 2021, 16, e0253882.	1.1	6
388	Targeting PTB for Glia-to-Neuron Reprogramming In Vitro and In Vivo for Therapeutic Development in Neurological Diseases. Biomedicines, 2022, 10, 399.	1.4	6
389	Homozygous <i>SOD1</i> Variation L144S Produces a Severe Form of Amyotrophic Lateral Sclerosis in an Iranian Family. Neurology: Genetics, 2022, 8, e645.	0.9	6
390	Clinical and biochemical evidence of skeletal muscle involvement in galactose-1-phosphate uridyl transferase deficiency. Journal of Neurology, 1993, 240, 272-277.	1.8	5
391	A novel splice site mutation (3157+1G>T) in the dystrophin gene causing total exon skipping and DMD phenotype. Human Mutation, 2001, 17, 239-239.	1.1	5
392	Calpain 3 deficiency in Quail Eater's disease. Annals of Neurology, 2004, 55, 146-147.	2.8	5
393	Transthyretin asn90 variant: Amyloidogenic or non-amyloidogenic role. Journal of the Neurological Sciences, 2009, 284, 113-115.	0.3	5
394	An evolutionary history of the selectin gene cluster in humans. Heredity, 2012, 109, 117-126.	1.2	5
395	Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Research Reviews, 2020, 64, 101172.	5.0	5
396	Sodium Channel Myotonia Due to Novel Mutations in Domain I of Nav1.4. Frontiers in Neurology, 2020, 11, 255.	1.1	5

#	Article	IF	CITATIONS
397	Clinical, neuroradiological and genetic findings in a cohort of patients with multiple Cerebral Cavernous Malformations. Metabolic Brain Disease, 2021, 36, 1871-1878.	1.4	5
398	Screening of LRP10 mutations in Parkinson's disease patients from Italy. Parkinsonism and Related Disorders, 2021, 89, 17-21.	1.1	5
399	Consumption of complement in a 26-year-old woman with severe thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. Journal of Autoimmunity, 2021, 124, 102728.	3.0	5
400	Ryanodine receptor gene point mutation and malignant hyperthermia susceptibility. Journal of Neurology, 1995, 242, 127-133.	1.8	4
401	The novel mitochondrial tRNAAsn gene mutation m.5709T>C produces ophthalmoparesis and respiratory impairment. European Journal of Human Genetics, 2012, 20, 357-360.	1.4	4
402	Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3407-3417.	1.8	4
403	Ophthalmoplegia Due to Miller Fisher Syndrome in a Patient With Myasthenia Gravis. Frontiers in Neurology, 2019, 10, 823.	1.1	4
404	Charcot–Marie–Tooth disease type 2F associated with biallelic <i>HSPB1</i> mutations. Annals of Clinical and Translational Neurology, 2021, 8, 1158-1164.	1.7	4
405	Improvement of Combined FISH and Immunofluorescence to Trace the Fate of Somatic Stem Cells after Transplantation. Journal of Histochemistry and Cytochemistry, 2004, 52, 1333-1339.	1.3	4
406	Biallelic Variants in ENDOG Associated with Mitochondrial Myopathy and Multiple mtDNA Deletions. Cells, 2022, 11, 974.	1.8	4
407	Intra-aortic injection of myoblasts in mdx mice: Genetic and technetium-99m cell labeling and biodistribution. , 1997, 20, 757-759.		3
408	Two dystrophin proteins and transcripts in a mild dystrophinopathic patient. Neuromuscular Disorders, 2003, 13, 13-16.	0.3	3
409	Is erythropoietin gene a modifier factor in amyotrophic lateral sclerosis?. Neurobiology of Aging, 2009, 30, 842-844.	1.5	3
410	Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Annals of Neurosciences, 2011, 18, 156-7.	0.9	3
411	G.P.174. Neuromuscular Disorders, 2014, 24, 858.	0.3	3
412	Registries versus tertiary care centers: How do we measure standards of care in Duchenne muscular dystrophy?. Neuromuscular Disorders, 2016, 26, 261-263.	0.3	3
413	Reply: DGUOK recessive mutations in patients with CPEO, mitochondrial myopathy, parkinsonism and mtDNA deletions. Brain, 2018, 141, e4-e4.	3.7	3
414	Subclinical Leber's hereditary optic neuropathy with pediatric acute spinal cord onset: more than meets the eye. BMC Neurology, 2018, 18, 220.	0.8	3

#	Article	IF	CITATIONS
415	Secondary prevention of cryptogenic stroke in patients with patent foramen ovale: a systematic review and meta-analysis. Internal and Emergency Medicine, 2018, 13, 1287-1303.	1.0	3
416	Hyperacute extensive spinal cord infarction and negative spine magnetic resonance imaging: a case report and review of the literature. Medicine (United States), 2020, 99, e22900.	0.4	3
417	A case report of late-onset cerebellar ataxia associated with a rare p.R342W TGM6 (SCA35) mutation. BMC Neurology, 2020, 20, 408.	0.8	3
418	Early Findings in Neonatal Cases of RYR1–Related Congenital Myopathies. Frontiers in Neurology, 2021, 12, 664618.	1.1	3
419	Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. International Journal of Molecular Sciences, 2021, 22, 9630.	1.8	3
420	Molecular analysis of SMARD1 patient-derived cells demonstrates that nonsense-mediated mRNA decay is impaired. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 908-910.	0.9	3
421	Muscular Dystrophy: Central Nervous System α-Dystroglycan Glycosylation Defects and Brain Malformation. Journal of Child Neurology, 2010, 25, 312-320.	0.7	2
422	G.P.251. Neuromuscular Disorders, 2014, 24, 892.	0.3	2
423	No association of IF116 (interferon-inducible protein 16) variants with susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2014, 271, 49-52.	1.1	2
424	Anti-sulfatide reactivity in patients with celiac disease. Scandinavian Journal of Gastroenterology, 2017, 52, 409-413.	0.6	2
425	Elucidating the role of Agl in bladder carcinogenesis by generation and characterization of genetically engineered mice. Carcinogenesis, 2019, 40, 194-201.	1.3	2
426	Herpes Simplex virus type 2 myeloradiculitis with a pure motor presentation in a liver transplant recipient. Transplant Infectious Disease, 2020, 22, e13236.	0.7	2
427	Co-occurrence of DMPK expansion and CLCN1 mutation in a patient with myotonia. Neurological Sciences, 2021, 42, 5365-5368.	0.9	2
428	Sodium Levels Predict Disability at Discharge in Guillain-Barré Syndrome: A Retrospective Cohort Study. Frontiers in Neurology, 2021, 12, 729252.	1.1	2
429	Novel mutations at a CpG dinucleotide in the ryanodine receptor in malignant hyperthermia. Human Mutation, 1998, 11, 45-50.	1.1	2
430	CACNA1S mutation associated with a case of juvenile-onset congenital myopathy. Journal of the Neurological Sciences, 2021, 431, 120047.	0.3	2
431	Limb girdle muscular dystrophy due to gene mutations: new mutations expand the clinical spectrum of a still challenging diagnosis. Acta Myologica, 2020, 39, 67-82.	1.5	2
432	Genetic modifiers of upper limb function in Duchenne muscular dystrophy. Journal of Neurology, 2022, 269, 4884-4894.	1.8	2

#	Article	IF	CITATIONS
433	Case Report: Rare Homozygous RNASEH1 Mutations Associated With Adult-Onset Mitochondrial Encephalomyopathy and Multiple Mitochondrial DNA Deletions. Frontiers in Genetics, 0, 13, .	1.1	2
434	A novel RRM2B mutation associated with mitochondrial DNA depletion syndrome. Molecular Genetics and Metabolism Reports, 2022, 32, 100887.	0.4	2
435	Cytochrome c oxidase deficiency. International Review of Neurobiology, 2002, 53, 205-240.	0.9	1
436	C.P.7.05 Becker muscular dystrophy with a stop codon mutation in the $5\hat{a}\in^2$ of the dystrophin gene. Neuromuscular Disorders, 2008, 18, 777-778.	0.3	1
437	The m.12316G>A mutation in the mitochondrial tRNALeu(CUN) gene is associated with mitochondrial myopathy and respiratory impairment. Journal of the Neurological Sciences, 2010, 292, 107-110.	0.3	1
438	Balancing selection in the extended MHC region maintains a subset of alleles with opposite risk profile for different autoimmune diseases. Genome Biology, 2010, 11, P38.	13.9	1
439	O.24 Loss of function of MGME1, a novel player in mitochondrial DNA replication, causes a distinct autosomal recessive mitochondrial disorder. Neuromuscular Disorders, 2013, 23, 852.	0.3	1
440	P.2.7 6min walk test 12month changes in DMD: Correlation with genotype. Neuromuscular Disorders, 2013, 23, 750-751.	0.3	1
441	Spontaneous Hydromyelic Cavity in Two Unrelated Patients with Late-Onset Pompe Disease: Is This a Fortuitous Association?. European Neurology, 2013, 70, 102-105.	0.6	1
442	Novel Lys215Asn mutation in an Italian family with Thomsen myotonia. Neurological Sciences, 2018, 39, 1491-1492.	0.9	1
443	Expanding the clinical spectrum of the mitochondrial mutation A13084T in the <i>ND5</i> gene. Neurology: Genetics, 2020, 6, e511.	0.9	1
444	New Insights into Cerebral Vessel Disease Landscapes at Single-Cell Resolution: Pathogenetic and Therapeutic Perspectives. Biomedicines, 2022, 10, 1693.	1.4	1
445	In vivo biolistic technique in control and mdx dystrophic mice. , 1996, 19, 912-914.		Ο
446	Response to Correspondence on "Spinal Cord Calcification in an Early-Onset Progressive Leukoencephalopathy― Journal of Child Neurology, 2011, 26, 1058-1058.	0.7	0
447	Safety of Systemic Chemotherapy in a Patient With Mitochondrial Myopathy and Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2012, 30, e226-e228.	0.8	Ο
448	Response to: Mitochondrial neuropathy affects peripheral and cranial nerves and is primary or secondary or both. Neuromuscular Disorders, 2016, 26, 549.	0.3	0
449	Late-onset leukoencephalopathy in a patient with recessive EARS2 mutations. Neurology: Genetics, 2020, 6, e488.	0.9	0
450	Expanding the genotypic and phenotypic spectrum of Betaâ€propeller poteinâ€associated neurodegeneration. European Journal of Neurology, 2021, 28, e25-e27.	1.7	0

#	Article	IF	CITATIONS
451	Clinical features and disease course of patients with acute ischaemic stroke just before the Italian index case: Was COVID-19 already there?. Internal and Emergency Medicine, 2021, 16, 1247-1252.	1.0	0
452	The nonsense mutation stop+4 model correlates with motor changes in Duchenne muscular dystrophy. Neuromuscular Disorders, 2021, 31, 479-488.	0.3	0
453	p.Asn1180lle mutation of SCN4A gene in an Italian family with myopathy and myotonic syndrome. Neurological Sciences, 2021, 42, 5359-5363.	0.9	0
454	Starting HIV therapy in patients with mitochondrial disease. Aids, 2021, 35, 2063-2065.	1.0	0
455	Fluency type index: A neuropsychological marker to predict amnestic mild cognitive impairment progression to Alzheimer's disease. Journal of the Neurological Sciences, 2021, 429, 119005.	0.3	0
456	Human spinal cord-like organoids to model C9ORF72 ALS and test new therapies in vitro. Journal of the Neurological Sciences, 2021, 429, 117761.	0.3	0
457	A young male with walking difficulties and subacute brainstem dysfunction: Adult-onset Leigh syndrome. Journal of the Neurological Sciences, 2021, 429, 119363.	0.3	0
458	COVID-19-related myopathy. , 0, , 207-224.		0
459	Case Report: Thymidine Kinase 2 (TK2) Deficiency: A Novel Mutation Associated With Childhood-Onset Mitochondrial Myopathy and Atypical Progression. Frontiers in Neurology, 2022, 13, 857279.	1.1	0