Quang-Hung Trinh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057698/publications.pdf Version: 2024-02-01

ΟΠΑΝΟ-ΗΠΝΟ ΤΡΙΝΗ

#	Article	IF	CITATIONS
1	Multi-performance optimization of multi-roller burnishing process in sustainable lubrication condition. Materials and Manufacturing Processes, 2022, 37, 407-427.	4.7	6
2	Artificial neural network-based optimization of operating parameters for minimum quantity lubrication-assisted burnishing process in terms of surface characteristics. Neural Computing and Applications, 2022, 34, 7005-7031.	5.6	7
3	Combination of atmospheric pressure plasma with catalysts for dry reforming of methane to value-added chemicals. , 2022, , 273-312.		1
4	Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. International Journal of Hydrogen Energy, 2020, 45, 18519-18532.	7.1	17
5	Optimization of Milling Parameters for Energy Savings and Surface Quality. Arabian Journal for Science and Engineering, 2020, 45, 9111-9125.	3.0	15
6	Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Science and Technology, 2020, 29, 035014.	3.1	14
7	Reprint of "Improvement of mechanical strength of hydrophobic coating on glass surfaces by an atmospheric pressure plasma jetâ€. Surface and Coatings Technology, 2019, 376, 124785.	4.8	1
8	Multi-objective optimization of the flat burnishing process for energy efficiency and surface characteristics. Materials and Manufacturing Processes, 2019, 34, 1888-1901.	4.7	21
9	Deposition of superhydrophobic coatings on glass substrates from hexamethyldisiloxane using a kHz-powered plasma jet. Surface and Coatings Technology, 2019, 361, 377-385.	4.8	18
10	Analysis of an Ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse. Plasma Science and Technology, 2019, 21, 095401.	1.5	13
11	Improvement of Electrical Measurement of a Dielectric Barrier Discharge Plasma Jet. IEEE Transactions on Plasma Science, 2019, 47, 2004-2010.	1.3	14
12	Formation of plasma-polymerized superhydrophobic coating using an atmospheric-pressure plasma jet. Thin Solid Films, 2019, 675, 34-42.	1.8	19
13	Robust hydrophobic coating on glass surface by an atmospheric-pressure plasma jet for plasma-polymerisation of hexamethyldisiloxane conjugated with (3-aminopropyl) triethoxysilane. Surface Engineering, 2019, 35, 466-475.	2.2	21
14	Improvement of mechanical strength of hydrophobic coating on glass surfaces by an atmospheric pressure plasma jet. Surface and Coatings Technology, 2019, 357, 12-22.	4.8	13
15	Tailoring the wettability of glass using a double-dielectric barrier discharge reactor. Heliyon, 2018, 4, e00522.	3.2	12
16	Plasma-catalytic decomposition of nitrous oxide over Î ³ -alumina-supported metal oxides. Catalysis Today, 2018, 310, 42-48.	4.4	19
17	Hydrophobic Coating Of Glass Surface Using Atmospheric Pressure Dielectric Barrier Discharge Plasma. , 2017, , .		0
18	Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption–plasma decomposition process. Chemical Engineering Journal, 2016, 302, 12-22.	12.7	27

QUANG-HUNG TRINH

#	Article	IF	CITATIONS
19	Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds. Korean Journal of Chemical Engineering, 2016, 33, 735-748.	2.7	50
20	Non-Thermal Plasma Combined with Cordierite-Supported Mn and Fe Based Catalysts for the Decomposition of Diethylether. Catalysts, 2015, 5, 800-814.	3.5	37
21	Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite. Journal of Hazardous Materials, 2015, 285, 525-534.	12.4	90
22	Effect of the adsorbent/catalyst preparation method and plasma reactor configuration on the removal of dilute ethylene from air stream. Catalysis Today, 2015, 256, 170-177.	4.4	40
23	Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst. Japanese Journal of Applied Physics, 2015, 54, 01AC04.	1.5	27
24	Characteristics of Packed-bed Plasma Reactor with Dielectric Barrier Discharge for Treating. Applied Chemistry for Engineering, 2015, 26, 495-504.	0.2	5
25	Hydrophobic coating of silicate phosphor powder using atmospheric pressure dielectric barrier discharge plasma. AICHE Journal, 2014, 60, 829-838.	3.6	12
26	Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma. Applied Chemistry for Engineering, 2014, 25, 455-462.	0.2	0