
Rachel Bezanson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES. Astrophysical Journal, Supplement Series, 2014, 214, 24.	7.7	728
2	THE GROWTH OF MASSIVE GALAXIES SINCE <i>z</i> = 2. Astrophysical Journal, 2010, 709, 1018-1041.	4.5	645
3	3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, Supplement Series, 2012, 200, 13.	7.7	536
4	THE 3D-HST SURVEY: <i>HUBBLE SPACE TELESCOPE</i> WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR â ¹ / ₄ 100,000 GALAXIES. Astrophysical Journal, Supplement Series, 2016, 225, 27.	7.7	513
5	THE RELATION BETWEEN COMPACT, QUIESCENT HIGH-REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GROWTH. Astrophysical Journal, 2009, 697, 1290-1298.	4.5	420
6	THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO <i>z</i>	4.5	376
7	FORMING COMPACT MASSIVE GALAXIES. Astrophysical Journal, 2015, 813, 23.	4.5	240
8	THE FREQUENCY OF TIDAL FEATURES ASSOCIATED WITH NEARBY LUMINOUS ELLIPTICAL GALAXIES FROM A STATISTICALLY COMPLETE SAMPLE. Astronomical Journal, 2009, 138, 1417-1427.	4.7	224
9	A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES AT <i>z</i> > 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES. Astrophysical Journal, 2012, 745, 179.	4.5	186
10	STELLAR KINEMATICS OF <i>z</i> â ¹ /4 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES [,] . Astrophysical Journal, 2013, 771, 85.	4.5	179
11	THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr. Astrophysical Journal, Supplement Series, 2016, 223, 29.	7.7	133
12	COSMOS-DASH: The Evolution of the Galaxy Size–Mass Relation since zÂâ^1⁄4Â3 from New Wide-field WFC3 Imaging Combined with CANDELS/3D-HST. Astrophysical Journal, 2019, 880, 57.	4.5	118
13	DENSE CORES IN GALAXIES OUT TO <i>z</i> = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS. Astrophysical Journal, 2014, 791, 45.	4.5	111
14	SPATIALLY RESOLVED Hα MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT <i>z</i> â ¹ /4 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES. Astrophysical Journal Letters, 2012, 747, L28.	8.3	104
15	FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT <i>z</i> > 1. Astrophysical Journal Letters, 2011, 743, L15.	8.3	103
16	GALAXY STRUCTURE AS A DRIVER OF THE STAR FORMATION SEQUENCE SLOPE AND SCATTER. Astrophysical Journal Letters, 2015, 811, L12.	8.3	98
17	THE STELLAR VELOCITY DISPERSION OF A COMPACT MASSIVE GALAXY AT <i>z</i> = 1.80 USING X-SHOOTER: CONFIRMATION OF THE EVOLUTION IN THE MASS-SIZE AND MASS-DISPERSION RELATIONS [,] . Astrophysical Journal Letters, 2011, 736, L9.	8.3	94
18	Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 < z < 2.5. Astrophysical Journal, 2017, 838, 19.	4.5	87

RACHEL BEZANSON

#	Article	IF	CITATIONS
19	REDSHIFT EVOLUTION OF THE GALAXY VELOCITY DISPERSION FUNCTION. Astrophysical Journal Letters, 2011, 737, L31.	8.3	75
20	The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 2: Dynamical and Stellar Population Properties of zÂ≲Â1 Galaxies in the COSMOS Field. Astrophysical Journal, Supplement Series, 2018, 239, 27.	7.7	74
21	Fast and Slow Paths to Quiescence: Ages and Sizes of 400 Quiescent Galaxies from the LEGA-C Survey. Astrophysical Journal, 2018, 868, 37.	4.5	72
22	A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014, 513, 394-397.	27.8	71
23	Discovery of a Dark, Massive, ALMA-only Galaxy at zÂâ^¼Â5–6 in a Tiny 3 mm Survey. Astrophysical Journal, 2019, 884, 154.	4.5	70
24	THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO <i>z</i>)a^1/4 2. Astrophysical Journal, 2010, 719, 1715-1732.	4.5	64
25	MASSIVE AND NEWLY DEAD: DISCOVERY OF A SIGNIFICANT POPULATION OF GALAXIES WITH HIGH-VELOCITY DISPERSIONS AND STRONG BALMER LINES AT <i>z</i> â ¹ /4 1.5 FROM DEEP KECK SPECTRA AND <i>HST</i> /WFO IMAGING. Astrophysical Journal Letters, 2013, 764, L8.	C 8 .3	58
26	Massive Quenched Galaxies at zÂâ^¼Â0.7 Retain Large Molecular Gas Reservoirs. Astrophysical Journal Letters, 2017, 846, L14.	8.3	58
27	TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY <i>z</i>	8.3	56
28	Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in zÂâ^1/4Â0.8 Quiescent Galaxies. Astrophysical Journal, 2018, 858, 60.	4.5	52
29	The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 3: 3000 High-quality Spectra of K _s -selected Galaxies at z > 0.6. Astrophysical Journal, Supplement Series, 2021, 256, 44.	7.7	52
30	Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey. Astrophysical Journal, 2018, 860, 103.	4.5	48
31	EVOLUTION OF QUIESCENT AND STAR-FORMING GALAXIES SINCE <i>z </i> àî¼ 1.5 AS A FUNCTION OF THEIR VELOCITY DISPERSIONS. Astrophysical Journal, 2012, 760, 62.	4.5	45
32	Stellar Populations of over 1000 zÂâ^¼Â0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from D _n 4000 and Hδ. Astrophysical Journal, 2018, 855, 85.	4.5	45
33	LOW GAS FRACTIONS CONNECT COMPACT STAR-FORMING GALAXIES TO THEIR zÂâ^1/4Â2 QUIESCENT DESCENDANTS. Astrophysical Journal, 2016, 832, 19.	4.5	42
34	Rejuvenation in zÂâ^1⁄4Â0.8 Quiescent Galaxies in LEGA-C. Astrophysical Journal, 2019, 877, 48.	4.5	41
35	Star Formation Histories of zÂâ^1⁄4Â1 Galaxies in LEGA-C. Astrophysical Journal, 2018, 861, 13.	4.5	36
36	ALMA Measures Rapidly Depleted Molecular Gas Reservoirs in Massive Quiescent Galaxies at z â^1⁄4 1.5. Astrophysical Journal, 2021, 908, 54.	4.5	36

RACHEL BEZANSON

#	Article	IF	CITATIONS
37	Quenching of star formation from a lack of inflowing gas to galaxies. Nature, 2021, 597, 485-488.	27.8	36
38	The Colors and Sizes of Recently Quenched Galaxies: A Result of Compact Starburst before Quenching. Astrophysical Journal, 2020, 888, 77.	4.5	36
39	Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift â^1⁄41.2:Massive Compact Galaxies Are Older than More Extended Ones. Astrophysical Journal, 2017, 838, 94.	4.5	35
40	Extremely Low Molecular Gas Content in a Compact, Quiescent Galaxy at zÂ=Â1.522. Astrophysical Journal Letters, 2019, 873, L19.	8.3	35
41	Stellar Metallicities and Elemental Abundance Ratios of zÂâ^¼Â1.4 Massive Quiescent Galaxies*. Astrophysical Journal Letters, 2019, 880, L31.	8.3	33
42	ONE PLANE FOR ALL: MASSIVE STAR-FORMING AND QUIESCENT GALAXIES LIE ON THE SAME MASS FUNDAMENTAL PLANE AT <i>z</i> å^¼ 0 AND <i>z</i> å^¼ 0.7. Astrophysical Journal, 2015, 799, 148.	4.5	31
43	THE FUNDAMENTAL PLANE OF MASSIVE QUIESCENT GALAXIES OUT TO <i>z</i> â^¼ 2. Astrophysical Journal Letters, 2014, 793, L31.	8.3	26
44	Stellar Dynamics and Star Formation Histories of zÂâ^¼Â1 Radio-loud Galaxies. Astrophysical Journal, 2017, 847, 72.	4.5	26
45	LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE. Astrophysical Journal, 2016, 822, 30.	4.5	26
46	LARGE-SCALE STAR-FORMATION-DRIVEN OUTFLOWS AT 1 < <i>z</i> < 2 IN THE 3D-HST SURVEY. Astrophysical Journal, 2012, 760, 49.	4.5	24
47	1D Kinematics from Stars and Ionized Gas at zÂâ^¼Â0.8 from the LEGA-C Spectroscopic Survey of Massive Galaxies. Astrophysical Journal Letters, 2018, 868, L36.	8.3	24
48	Now You See It, Now You Don't: Star Formation Truncation Precedes the Loss of Molecular Gas by â^¼100 Myr in Massive Poststarburst Galaxies at z â^¼ 0.6. Astrophysical Journal, 2022, 925, 153.	4.5	23
49	Evidence for Inside-out Galaxy Growth and Quenching of a zÂâ^1⁄4Â2 Compact Galaxy From High-resolution Molecular Gas Imaging. Astrophysical Journal, 2019, 883, 81.	4.5	22
50	Inverse stellar population age gradients of post-starburst galaxies at zÂ= 0.8 with LEGA-C. Monthly Notices of the Royal Astronomical Society, 2020, 497, 389-404.	4.4	22
51	SQuIGGL⃗E :Studying Quenching in Intermediate-z Galaxies—Gas,AnguL⃗ar Momentum, and Evolution. Astrophysical Journal, 2022, 926, 89.	4.5	20
52	The Fundamental Plane in the LEGA-C Survey: Unraveling the M/L Ratio Variations of Massive Star-forming and Quiescent Galaxies at z â^¼ 0.8. Astrophysical Journal, 2021, 913, 103.	4.5	19
53	Elemental Abundances and Ages of z â^¼ 0.7 Quiescent Galaxies on the Mass–Size Plane: Implication for Chemical Enrichment and Star Formation Quenching. Astrophysical Journal Letters, 2021, 917, L1.	8.3	18
54	Recent Star Formation in a Massive Slowly Quenched Lensed Quiescent Galaxy at z = 1.88. Astrophysical Journal Letters, 2021, 907, L8.	8.3	18

#	Article	IF	CITATIONS
55	The Role of Active Galactic Nuclei in the Quenching of Massive Galaxies in the SQuIGG E Survey. Astrophysical Journal Letters, 2020, 899, L9.	8.3	18
56	THE RELATION BETWEEN DYNAMICAL MASS-TO-LIGHT RATIO AND COLOR FOR MASSIVE QUIESCENT GALAXIES OUT TO <i>z</i> â ¹ /4 2 AND COMPARISON WITH STELLAR POPULATION SYNTHESIS MODELS. Astrophysical Journal, 2015, 799, 125.	4.5	17
57	Early Science with the Large Millimeter Telescope: Constraining the Gas Fraction of a Compact Quiescent Galaxy at $z = 1.883$. Astrophysical Journal Letters, 2021, 910, L7.	8.3	17
58	High Molecular-gas to Dust Mass Ratios Predicted in Most Quiescent Galaxies. Astrophysical Journal Letters, 2021, 922, L30.	8.3	17
59	EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS. Astrophysical Journal Letters, 2013, 778, L24.	8.3	15
60	Stellar and Molecular Gas Rotation in a Recently Quenched Massive Galaxy at zÂâ^1⁄4Â0.7. Astrophysical Journal Letters, 2018, 860, L18.	8.3	15
61	REQUIEM-2D Methodology: Spatially Resolved Stellar Populations of Massive Lensed Quiescent Galaxies from Hubble Space Telescope 2D Grism Spectroscopy. Astrophysical Journal, 2020, 900, 184.	4.5	15
62	The LEGA-C and SAMI galaxy surveys: quiescent stellar populations and the mass–size plane across 6 Gyr. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3828-3845.	4.4	15
63	Quenching and the UVJ Diagram in the SIMBA Cosmological Simulation. Astrophysical Journal, 2022, 929, 94.	4.5	14
64	SQuIGG E Survey: Massive zÂâ^¼Â0.6 Post-starburst Galaxies Exhibit Flat Age Gradients. Astrophysical Journal, 2020, 905, 79.	4.5	12
65	Stellar Kinematics and Environment at zÂâ^¼Â0.8 in the LEGA-C Survey: Massive Slow Rotators Are Built First in Overdense Environments. Astrophysical Journal Letters, 2020, 890, L25.	8.3	12
66	Diagnosing DASH: A Catalog of Structural Properties for the COSMOS-DASH Survey. Astrophysical Journal, 2022, 925, 34.	4.5	12
67	The Compact Structures of Massive z â^¼ 0.7 Post-starburst Galaxies in the SQuIGGL⃗E Sample. Astrophysical Journal, 2022, 931, 51.	4.5	12
68	A NEARBY ANALOG OF <i>z</i> â^¼ 2 COMPACT QUIESCENT GALAXIES WITH A ROTATING DISK. Astrophysical Journal Letters, 2012, 749, L10.	8.3	11
69	HST F160W Imaging of Very Massive Galaxies at 1.5Â<ÂzÂ<Â3.0: Diversity of Structures and the Effect of Close Pairs on Number Density Estimates. Astrophysical Journal, 2019, 871, 201.	4.5	11
70	Stellar Dynamical Models for 797 z â^¼ 0.8 Galaxies from LEGA-C. Astrophysical Journal, 2021, 923, 11.	4.5	11
71	Complete IRAC Mapping of the CFHTLS-DEEP, MUSYC, and NMBS-II Fields. Publications of the Astronomical Society of the Pacific, 2018, 130, 124501.	3.1	10
72	Toward Precise Galaxy Evolution: A Comparison between Spectral Indices of z â^1⁄41 Galaxies in the IllustrisTNG Simulation and the LEGA-C Survey. Astronomical Journal, 2021, 162, 201.	4.7	9

RACHEL BEZANSON

#	Article	IF	CITATIONS
73	Near-infrared Spectroscopy of Five Ultra-massive Galaxies at 1.7Â<ÂzÂ<Â2.7. Astrophysical Journal, 2017, 838, 57.	4.5	8
74	Tightly Coupled Morpho-kinematic Evolution for Massive Star-forming and Quiescent Galaxies across 7 Gyr of Cosmic Time. Astrophysical Journal Letters, 2020, 903, L30.	8.3	8
75	Ubiquitous [O ii] Emission in Quiescent Galaxies at z â‰^0.85 from the LEGA-C Survey*. Astrophysical Journal, 2021, 923, 18.	4.5	8
76	The LEGA-C of Nature and Nurture in Stellar Populations at z â^¼ 0.6–1.0: D _n 4000 and Hδ Reveal Different Assembly Histories for Quiescent Galaxies in Different Environments. Astrophysical Journal, 2022, 926, 117.	4.5	8
77	An Absence of Radio-loud Active Galactic Nuclei in Geometrically Flat Quiescent Galaxies: Implications for Maintenance-mode Feedback Models. Astrophysical Journal Letters, 2019, 872, L12.	8.3	7
78	Dust Attenuation Curves at z â^1⁄4 0.8 from LEGA-C: Precise Constraints on the Slope and 2175ÃÂBump Strength. Astrophysical Journal, 2020, 903, 146.	4.5	7
79	ALMA Measures Molecular Gas Reservoirs Comparable to Field Galaxies in a Low-mass Galaxy Cluster at z = 1.3. Astrophysical Journal, 2022, 929, 35.	4.5	6
80	3D-DASH: The Widest Near-infrared Hubble Space Telescope Survey. Astrophysical Journal, 2022, 933, 129.	4.5	6
81	THE VELOCITY FUNCTION OF DARK MATTER HALOS AT <i>R</i> = 20 kpc: REMARKABLY LITTLE EVOLUTION SINCE <i>z</i> â‰^ 4. Astrophysical Journal Letters, 2013, 767, L21.	8.3	5
82	LEGA-C: Analysis of Dynamical Masses from Ionized Gas and Stellar Kinematics at z â^¼ 0.8. Astrophysical Journal, 2022, 928, 126.	4.5	2
83	CLIMBER: Galaxy–Halo Connection Constraints from Next-generation Surveys. Astrophysical Journal, 2022, 925, 180.	4.5	1