Ming O Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057533/publications.pdf Version: 2024-02-01

MINC O LI

#	Article	IF	CITATIONS
1	Cytotoxic granzyme C–expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. Science Immunology, 2022, 7, eabi8642.	5.6	47
2	Programme of self-reactive innate-like T cell-mediated cancer immunity. Nature, 2022, 605, 139-145.	13.7	38
3	Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nature Immunology, 2022, 23, 904-915.	7.0	39
4	A Targetable Myeloid Inflammatory State Governs Disease Recurrence in Clear-Cell Renal Cell Carcinoma. Cancer Discovery, 2022, 12, 2308-2329.	7.7	7
5	Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science, 2021, 371, 405-410.	6.0	188
6	Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity, 2021, 54, 976-987.e7.	6.6	56
7	Single-cell sequencing links multiregional immune landscapes and tissue-resident TÂcells in ccRCC to tumor topology and therapy efficacy. Cancer Cell, 2021, 39, 662-677.e6.	7.7	179
8	Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Reports, 2021, 35, 109210.	2.9	50
9	Immunity beyond cancer cells: perspective from tumor tissue. Trends in Cancer, 2021, 7, 1010-1019.	3.8	24
10	Delivery of membrane impermeable molecules to primary mouse T lymphocytes. STAR Protocols, 2021, 2, 100757.	0.5	2
11	Discovery and biological evaluation of phthalazines as novel non-kinase TGFβ pathway inhibitors. European Journal of Medicinal Chemistry, 2021, 223, 113660.	2.6	2
12	Nutrient mTORC1 signaling underpins regulatory T cell control of immune tolerance. Journal of Experimental Medicine, 2020, 217, .	4.2	24
13	TGF-Î ² suppresses type 2 immunity to cancer. Nature, 2020, 587, 115-120.	13.7	137
14	Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. Nature, 2020, 587, 121-125.	13.7	157
15	Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nature Communications, 2020, 11, 6298.	5.8	82
16	A Tug-of-War Over Methionine. Cell Metabolism, 2020, 32, 699-701.	7.2	1
17	Tissue-resident cytotoxic innate lymphoid cells in tumor immunosurveillance. Seminars in Immunology, 2019, 41, 101269.	2.7	9
18	Innate lymphocytes—lineage, localization and timing of differentiation. Cellular and Molecular Immunology, 2019, 16, 627-633.	4.8	30

Ming O Li

#	Article	IF	CITATIONS
19	Foxo transcription factors in T cell biology and tumor immunity. Seminars in Cancer Biology, 2018, 50, 13-20.	4.3	31
20	Re(de)fining Innate Lymphocyte Lineages in the Face of Cancer. Cancer Immunology Research, 2018, 6, 372-377.	1.6	10
21	Tissue-Resident Cytolytic Innate Lymphocytes in Cancer. Journal of Immunology, 2018, 200, 408-414.	0.4	10
22	TGFâ€Î² Control of Adaptive Immune Tolerance: A Break From Treg Cells. BioEssays, 2018, 40, e1800063.	1.2	60
23	Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science, 2018, 360, .	6.0	144
24	Satb1: Restraining PD1 and T Cell Exhaustion. Immunity, 2017, 46, 3-5.	6.6	19
25	Ets transcription factor GABP controls T cell homeostasis and immunity. Nature Communications, 2017, 8, 1062.	5.8	22
26	Foxp3-independent mechanism by which TGF-β controls peripheral T cell tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7536-E7544.	3.3	47
27	Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Science Translational Medicine, 2017, 9, .	5.8	61
28	T cell receptor signalling in the control of regulatory T cell differentiation and function. Nature Reviews Immunology, 2016, 16, 220-233.	10.6	388
29	Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science, 2016, 354, 481-484.	6.0	563
30	Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature, 2016, 529, 532-536.	13.7	162
31	Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-like T Cells. Cell, 2016, 164, 365-377.	13.5	276
32	TETs Link Hydrogen Sulfide to Immune Tolerance. Immunity, 2015, 43, 211-213.	6.6	11
33	Genome wide mapping of Foxo1 binding-sites in murine T lymphocytes. Genomics Data, 2014, 2, 280-281.	1.3	5
34	The ontogeny of tumor-associated macrophages: a new understanding of cancer-elicited inflammation. Oncolmmunology, 2014, 3, e955346.	2.1	15
35	The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344, 921-925.	6.0	1,071
36	Sestrins Function as Guanine Nucleotide Dissociation Inhibitors for Rag GTPases to Control mTORC1 Signaling. Cell, 2014, 159, 122-133.	13.5	194

Ming O Li

#	Article	IF	CITATIONS
37	The Transcription Factor Foxo1 Controls Central-Memory CD8+ T Cell Responses to Infection. Immunity, 2013, 39, 286-297.	6.6	157
38	TGF-β Cytokine Signaling Promotes CD8+ T Cell Development and Low-Affinity CD4+ T Cell Homeostasis by Regulation of Interleukin-7 Receptor α Expression. Immunity, 2013, 39, 335-346.	6.6	39
39	TGF-Î ² : Guardian of T Cell Function. Journal of Immunology, 2013, 191, 3973-3979.	0.4	255
40	Tgf-β1 produced by activated CD4 ⁺ T Cells Antagonizes T Cell Surveillance of Tumor Development. Oncolmmunology, 2012, 1, 162-171.	2.1	41
41	Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature, 2012, 491, 554-559.	13.7	348
42	Foxo: in command of T lymphocyte homeostasis and tolerance. Trends in Immunology, 2011, 32, 26-33.	2.9	94
43	T Cell Surveillance of Oncogene-Induced Prostate Cancer Is Impeded by T Cell-Derived TGF-β1 Cytokine. Immunity, 2011, 35, 123-134.	6.6	109
44	T cell- but not tumor cell-produced TGF-β1 promotes the development of spontaneous mammary cancer. Oncotarget, 2011, 2, 1339-1351.	0.8	13
45	Transforming Growth Factor-Î ² Signaling Curbs Thymic Negative Selection Promoting Regulatory T Cell Development. Immunity, 2010, 32, 642-653.	6.6	210
46	An Essential Role of the Forkhead-Box Transcription Factor Foxo1 in Control of T Cell Homeostasis and Tolerance. Immunity, 2009, 30, 358-371.	6.6	265
47	Contextual Regulation of Inflammation: A Duet by Transforming Growth Factor-β and Interleukin-10. Immunity, 2008, 28, 468-476.	6.6	420