Yi-Tao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057488/publications.pdf Version: 2024-02-01

YI-TAO LUU

#	Article	IF	CITATIONS
1	Smart Interfacing between Coâ€Fe Layered Double Hydroxide and Graphitic Carbon Nitride for Highâ€efficiency Electrocatalytic Nitrogen Reduction. Energy and Environmental Materials, 2023, 6, .	12.8	4
2	Vacancy-enhanced Mo-N2 interaction in MoSe2 nanosheets enables efficient electrocatalytic NH3 synthesis. Chinese Chemical Letters, 2023, 34, 107282.	9.0	3
3	Pt/TiO2– nanofibrous aerogel for effective nitrogen reduction: A simple strategy for simultaneous Pt formation and TiO2– vacancy engineering. Chinese Chemical Letters, 2022, 33, 1001-1005.	9.0	14
4	Highly Active and Selective Electroreduction of N ₂ by the Catalysis of Ga Single Atoms Stabilized on Amorphous TiO ₂ Nanofibers. ACS Nano, 2022, 16, 4186-4196.	14.6	33
5	Amorphous NiSb2O6– nanofiber: A d-/p-block Janus electrocatalyst toward efficient NH3 synthesis through boosted N2 adsorption and activation. Applied Catalysis B: Environmental, 2022, 308, 121225.	20.2	12
6	Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nature Communications, 2022, 13, 2637.	12.8	61
7	Flexible and tough zirconia-based nanofibrous membranes for thermal insulation. Composites Communications, 2022, 33, 101219.	6.3	13
8	Black phosphorus quantum dots supported by a conductive polymer nanofibrous membrane: A self-standing, metal-free electrocatalyst for nitrogen fixation. Composites Communications, 2021, 23, 100551.	6.3	8
9	g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Research, 2021, 14, 1479-1487.	10.4	21
10	Preparation and NRR application of transition metal nanosheets on carbon nanofiber membranes. Journal of Physics: Conference Series, 2021, 1948, 012222.	0.4	0
11	2D gallium molybdenum selenide grown on a hollow carbon nanofibrous aerogel for high-efficiency electroreduction of nitrogen: Optimized basal plane activity via selenium vacancy modulation. Applied Catalysis B: Environmental, 2021, 292, 120175.	20.2	18
12	Boron-induced sulfur vacancies in ZnIn2S4 nanosheets coupled to TiO2 nanofibers enhance the hydrogen evolution performance. Composites Communications, 2021, 27, 100903.	6.3	10
13	Nickel antimony oxide (NiSb2O6) nanofibers: amorphization and electrocatalytic nitrogen fixation under ambient conditions. Journal of Physics: Conference Series, 2021, 2021, 012076.	0.4	0
14	Coordinationâ€Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. Small, 2020, 16, 1902779.	10.0	11
15	Novel synthesis of Al-amorphized, flexible Fe2O3 nanofibrous membranes for enhanced electrocatalytic H2 evolution. Composites Communications, 2020, 22, 100470.	6.3	11
16	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Self‣upported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie, 2020, 132, 23452-23460.	2.0	3
17	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Selfâ€Supported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie - International Edition, 2020, 59, 23252-23260.	13.8	87
18	P-doped WO ₃ flowers fixed on a TiO ₂ nanofibrous membrane for enhanced electroreduction of N ₂ . Chemical Communications, 2020, 56, 12937-12940.	4.1	9

YI-TAO LIU

#	Article	lF	CITATIONS
19	Promoted Electrocatalytic Nitrogen Fixation in Feâ€Ni Layered Double Hydroxide Arrays Coupled to Carbon Nanofibers: The Role of Phosphorus Doping. Angewandte Chemie, 2020, 132, 13725-13729.	2.0	14
20	Promoted Electrocatalytic Nitrogen Fixation in Feâ€Ni Layered Double Hydroxide Arrays Coupled to Carbon Nanofibers: The Role of Phosphorus Doping. Angewandte Chemie - International Edition, 2020, 59, 13623-13627.	13.8	61
21	Carbonâ€Nanoplated CoS@TiO ₂ Nanofibrous Membrane: An Interfaceâ€Engineered Heterojunction for Highâ€Efficiency Electrocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18903-18907.	13.8	119
22	Carbonâ€Nanoplated CoS@TiO 2 Nanofibrous Membrane: An Interfaceâ€Engineered Heterojunction for Highâ€Efficiency Electrocatalytic Nitrogen Reduction. Angewandte Chemie, 2019, 131, 19079-19083.	2.0	22
23	Stable Confinement of Black Phosphorus Quantum Dots on Black Tin Oxide Nanotubes: A Robust, Doubleâ€Active Electrocatalyst toward Efficient Nitrogen Fixation. Angewandte Chemie - International Edition, 2019, 58, 16439-16444.	13.8	112
24	Stable Confinement of Black Phosphorus Quantum Dots on Black Tin Oxide Nanotubes: A Robust, Doubleâ€Active Electrocatalyst toward Efficient Nitrogen Fixation. Angewandte Chemie, 2019, 131, 16591-16596.	2.0	42
25	Self-organized growth of flower-like SnS ₂ and forest-like ZnS nanoarrays on nickel foam for synergistic superiority in electrochemical ammonia synthesis. Journal of Materials Chemistry A, 2019, 7, 22235-22241.	10.3	66
26	Sb ₂ S ₃ nanoparticles anchored on SnO ₂ nanofibers: a high-performance hybrid electrocatalyst toward ammonia synthesis under ambient conditions. Chemical Communications, 2019, 55, 13892-13895.	4.1	13
27	From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk–shell microspheres by aluminothermic reduction for lithium storage. Chinese Chemical Letters, 2019, 30, 610-617.	9.0	25
28	GO/PVA nanocomposites with significantly enhanced mechanical properties through metal ion coordination. Chinese Chemical Letters, 2019, 30, 1100-1104.	9.0	18
29	Dandelion-like Co ₃ O ₄ mesoporous nanostructures supported by a Cu foam for efficient oxygen evolution and lithium storage. Chemical Communications, 2018, 54, 5138-5141.	4.1	26
30	Elaborate synthesis of black tin oxide–black titanium oxide core–shell nanotubes for ultrastable and fast lithium storage. Chemical Communications, 2018, 54, 4790-4793.	4.1	16
31	Selfâ€Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Advanced Materials, 2018, 30, e1707334.	21.0	467
32	A universal strategy for the <i>in situ</i> synthesis of TiO ₂ (B) nanosheets on pristine carbon nanomaterials for high-rate lithium storage. Journal of Materials Chemistry A, 2018, 6, 7070-7079.	10.3	27
33	Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 21255-21260.	10.3	151
34	Hybrid Architectures based on 2D MXenes and Lowâ€Dimensional Inorganic Nanostructures: Methods, Synergies, and Energyâ€Related Applications. Small, 2018, 14, e1803632.	10.0	54
35	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	10.0	125
36	V2O5 nanoparticles confined in Threeâ^'Dimensionally organized, porous Nitrogenâ^'Doped graphene frameworks: Flexible and Freeâ^'Standing cathodes for high performance lithium storage. Carbon, 2018, 140, 218-226.	10.3	27

YI-TAO LIU

#	Article	IF	CITATIONS
37	Elastic and conductive MWCNT/SBS nanocomposites as superior piezoresistive sensors. Micro and Nano Letters, 2017, 12, 17-19.	1.3	2
38	<i>h</i> â€BN Nanosheets as 2D Substrates to Load 0D Fe ₃ O ₄ Nanoparticles: A Hybrid Anode Material for Lithiumâ€ion Batteries. Chemistry - an Asian Journal, 2016, 11, 828-833.	3.3	48
39	Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage. Nano Research, 2016, 9, 2057-2069.	10.4	38
40	Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage. Nano Energy, 2016, 30, 347-354.	16.0	107
41	Boosting High-Rate Lithium Storage of V2 O5 Nanowires by Self-Assembly on N-Doped Graphene Nanosheets. ChemElectroChem, 2016, 3, 1729-1729.	3.4	2
42	Facile and Green Production of Impurityâ€Free Aqueous Solutions of WS ₂ Nanosheets by Direct Exfoliation in Water. Small, 2016, 12, 6703-6713.	10.0	44
43	Boosting Highâ€Rate Lithium Storage of V ₂ O ₅ Nanowires by Selfâ€Assembly on Nâ€Doped Graphene Nanosheets. ChemElectroChem, 2016, 3, 1730-1736.	3.4	30
44	Aluminothermic reduction enabled synthesis of silicon hollow microspheres from commercialized silica nanoparticles for superior lithium storage. Chemical Communications, 2016, 52, 8401-8404.	4.1	48
45	Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4900-4907.	10.3	58
46	Constructing Novel Si@SnO2 Core–Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 7092-7100.	8.0	69
47	Elaborately Designed Hierarchical Heterostructures Consisting of Carbonâ€Coated TiO ₂ (B) Nanosheets Decorated with Fe ₃ O ₄ Nanoparticles for Remarkable Synergy in Highâ€Rate Lithium Storage. Advanced Materials Interfaces, 2015, 2, 1500239.	3.7	41
48	Delicate ternary heterostructures achieved by hierarchical co-assembly of Ag and Fe ₃ O ₄ nanoparticles on MoS ₂ nanosheets: morphological and compositional synergy in reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 2726-2733.	10.3	76
49	Hierarchical assembly of SnO ₂ nanowires on MnO ₂ nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 6477-6483.	10.3	66
50	Creating a synergistic interplay between tubular MoS ₂ and particulate Fe ₃ O ₄ for improved lithium storage. Chemical Communications, 2015, 51, 11888-11891.	4.1	39
51	Smart Hybridization of TiO ₂ Nanorods and Fe ₃ O ₄ Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for Highâ€Rate Lithium Storage. Advanced Functional Materials, 2015, 25, 3341-3350.	14.9	183
52	Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Advances, 2014, 4, 41543-41550.	3.6	26
53	Improved Mechanical Properties of Graphene Oxide/Poly(ethylene oxide) Nanocomposites by Dynamic Interfacial Interaction of Coordination. Australian Journal of Chemistry, 2014, 67, 121.	0.9	16
54	Coordinationâ€Driven Hierarchical Assembly of Silver Nanoparticles on MoS ₂ Nanosheets for Improved Lithium Storage. Chemistry - an Asian Journal, 2014, 9, 1519-1524.	3.3	55

YI-TAO LIU

#	Article	IF	CITATIONS
55	Flexible and robust MoS2–graphene hybrid paper cross-linked by a polymer ligand: a high-performance anode material for thin film lithium-ion batteries. Chemical Communications, 2013, 49, 10305.	4.1	122
56	A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids. Chemical Communications, 2013, 49, 1642.	4.1	34
57	Tuning the solubility of boron nitridenanosheets in organic solvents by using block copolymer as a "Janus―modifier. Chemical Communications, 2013, 49, 388-390.	4.1	38
58	A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties. Chinese Chemical Letters, 2013, 24, 17-19.	9.0	40
59	Processable and Robust MoS ₂ Paper Chemically Crossâ€Linked with Polymeric Ligands by the Coordination of Divalent Metal Ions. Chemistry - an Asian Journal, 2013, 8, 817-823.	3.3	23
60	Synergistic effect of Cu2+-coordinated carbon nanotube/graphene network on the electrical and mechanical properties of polymer nanocomposites. Journal of Materials Chemistry, 2011, 21, 18723.	6.7	56
61	The production of flexible and transparent conductive films of carbon nanotube/graphene networks coordinated by divalent metal (Cu, Ca or Mg) ions. Carbon, 2011, 49, 3371-3375.	10.3	77
62	High-concentration organic solutions of poly(styrene-co-butadiene-co-styrene)-modified graphene sheets exfoliated from graphite. Carbon, 2011, 49, 3529-3537.	10.3	86
63	Selective self-assembly of surface-functionalized carbon nanotubes in block copolymer template. Carbon, 2009, 47, 1883-1885.	10.3	22
64	Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyreneâ€based polymers. Journal of Applied Polymer Science, 2008, 109, 3525-3532.	2.6	28
65	Synthesis of hyperbranched aromatic polyamide–imide and its grafting onto multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2007, 106, 2413-2421.	2.6	25
66	Polymer-assisted assembly of carbon nanotubes via a template-based method. Carbon, 2006, 44, 599-602.	10.3	11
67	Noncovalent surface modification of carbon nanotubes for solubility in organic solvents. Carbon, 2006, 44, 1613-1616.	10.3	57
68	Field Emission Characteristics of Carbon Nanotube Films Fabricated by Different Methods. , 2006, , .		0