Alessio Rocchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057458/publications.pdf

Version: 2024-02-01

248 papers 59,546 citations

83 h-index 232 g-index

251 all docs

251 docs citations

251 times ranked

17272 citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
14	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
15	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
16	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
17	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
18	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808

#	Article	IF	CITATIONS
19	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
20	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
21	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
22	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
23	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
24	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
25	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
26	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
27	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
28	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
29	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
30	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
31	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
32	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
33	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
34	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
35	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
36	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254

#	Article	IF	Citations
37	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
38	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
39	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
40	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
41	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
42	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
43	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
44	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
45	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
46	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
47	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
48	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
49	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
50	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
51	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
52	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
53	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
54	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135

#	Article	IF	Citations
55	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
56	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
57	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
58	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
59	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
60	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
61	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
62	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
63	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
64	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
65	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
66	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
67	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
68	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
69	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
70	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
71	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
72	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1,5	94

#	Article	IF	CITATIONS
73	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
74	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
75	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
76	Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Physical Review D, 2003, 68, .	1.6	90
77	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
78	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
79	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
80	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
81	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
82	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
83	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
84	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
85	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
86	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
87	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
88	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
89	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
90	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73

#	Article	IF	Citations
91	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
92	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
93	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
94	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
95	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
96	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
97	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
98	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
99	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
100	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
101	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
102	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
103	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
104	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
105	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
106	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
107	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
108	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60

#	Article	IF	CITATIONS
109	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
110	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
111	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
112	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
113	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
114	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
115	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
116	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
117	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
118	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
119	Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001. Classical and Quantum Gravity, 2002, 19, 5449-5463.	1.5	51
120	Results of the IGEC-2 search for gravitational wave bursts during 2005. Physical Review D, 2007, 76, .	1.6	50
121	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
122	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
123	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
124	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
125	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
126	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46

#	Article	IF	Citations
127	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
128	Increasing the Bandwidth of Resonant Gravitational Antennas: The Case of Explorer. Physical Review Letters, 2003, 91, 111101.	2.9	42
129	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
130	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
131	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
132	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91 , .	1.6	39
133	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
134	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.	2.9	36
135	Thermal effects and their compensation in Advanced Virgo. Journal of Physics: Conference Series, 2012, 363, 012016.	0.3	35
136	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89 , .	1.6	35
137	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
138	Implementation of an $\frac{F}{s-s}$ -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
139	Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5ÂK. Physical Review D, 2007, 76, .	1.6	32
140	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
141	Search for Gravitational Waves Associated with $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> $<$ mml:mi> $\hat{I}^3 <$ mml:mi> $<$ /mml:math>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	2.9	32
142	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
143	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
144	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31

#	Article	IF	Citations
145	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
146	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
147	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
148	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
149	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
150	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
151	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
152	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
153	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
154	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
155	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
156	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
157	The large scale polarization explorer (LSPE) for CMB measurements: performance forecast. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008.	1.9	27
158	Effect of cosmic rays on the resonant gravitational wave detector Nautilus at temperature T=1.5ÂK. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 540, 179-184.	1.5	26
159	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
160	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
161	Status report on the EXPLORER and NAUTILUS detectors and the present science run. Classical and Quantum Gravity, 2006, 23, S57-S62.	1.5	24
162	Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS. Physical Review D, 2002, 66, .	1.6	23

#	Article	IF	CITATIONS
163	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	23
164	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
165	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
166	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
167	Preparing for science run 1 of MiniGRAIL. Classical and Quantum Gravity, 2006, 23, S79-S84.	1.5	19
168	IGEC2: A 17-month search for gravitational wave bursts in 2005–2007. Physical Review D, 2010, 82, .	1.6	19
169	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
170	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
171	All-sky upper limit for gravitational radiation from spinning neutron stars. Classical and Quantum Gravity, 2003, 20, S665-S676.	1.5	17
172	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
173	Cooling down MiniGRAIL to milli-Kelvin temperatures. Classical and Quantum Gravity, 2004, 21, S465-S471.	1.5	16
174	MiniGRAIL progress report 2004. Classical and Quantum Gravity, 2005, 22, S215-S219.	1.5	16
175	Detection of high energy cosmic rays with the resonant gravitational wave detectors NAUTILUS and EXPLORER. Astroparticle Physics, 2008, 30, 200-208.	1.9	16
176	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
177	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
178	Progress Report on the Large-Scale Polarization Explorer. Journal of Low Temperature Physics, 2020, 200, 374-383.	0.6	16
179	Cumulative analysis of the association between the data of the gravitational wave detectors NAUTILUS and EXPLORER and the gamma ray bursts detected by BATSE and BeppoSAX. Physical Review D, 2005, 71, .	1.6	15
180	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15

#	Article	lF	CITATIONS
181	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007â \in 2013. Physical Review D, 2016, 93, .	1.6	14
182	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
183	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
184	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
185	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
186	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
187	Comments on the 2001 run of the EXPLORER/NAUTILUS gravitational wave experiment. Classical and Quantum Gravity, 2003, 20, S785-S788.	1.5	11
188	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
189	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
190	An all-sky search of EXPLORER data. Classical and Quantum Gravity, 2005, 22, S1243-S1254.	1.5	10
191	The 2003 run of the EXPLORER–NAUTILUS gravitational wave experiment. Classical and Quantum Gravity, 2006, 23, S169-S178.	1.5	10
192	All-sky search of NAUTILUS data. Classical and Quantum Gravity, 2008, 25, 184012.	1.5	10
193	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
194	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
195	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
196	Search for gravitational wave bursts by the network of resonant detectors. Classical and Quantum Gravity, 2002, 19, 1367-1375.	1.5	9
197	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
198	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9

#	Article	IF	CITATIONS
199	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
200	The next science run of the gravitational wave detector NAUTILUS. Classical and Quantum Gravity, 2002, 19, 1911-1917.	1.5	8
201	Acoustic detection of high-energy electrons in a superconducting niobium resonant bar. Europhysics Letters, 2006, 76, 987-993.	0.7	8
202	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
203	Laser with an in-loop relative frequency stability of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml 100-ms="" 2009.="" 79<="" a="" a.="" detection.="" for="" gravitational-wave="" physical="" review="" scale="" td="" time=""><td>:mn>10<!--</td--><td>mml:mn><</td></td></mml></mml:mrow></mml:msup></mml:mrow></mml:math>	:mn>10 </td <td>mml:mn><</td>	mml:mn><
204	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
205	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
206	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
207	The EXPLORER gravitational wave antenna: recent improvements and performances. Classical and Quantum Gravity, 2002, 19, 1905-1910.	1.5	7
208	Searching for counterpart of \hat{A} -ray bursts with resonant gravitational wave detectors. Classical and Quantum Gravity, 2004, 21, S759-S764.	1.5	7
209	Use of good copper for the optimization of the cooling down procedure of large masses. Cryogenics, 2004, 44, 167-170.	0.9	7
210	Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1801-1806.	0.9	7
211	Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 2010, 27, 149801.	1.5	7
212	The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds. , 2018 , , .		7
213	EXPLORER and NAUTILUS gravitational wave detectors: a status report. Classical and Quantum Gravity, 2008, 25, 114048.	1.5	6
214	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
215	Dark matter searches using gravitational wave bar detectors: Quark nuggets and newtorites. Astroparticle Physics, 2016, 78, 52-64.	1.9	6
216	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6

#	Article	IF	CITATIONS
217	The status of virgo. Journal of Physics: Conference Series, 2008, 110, 062025.	0.3	5
218	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
219	Analysis of $3 \hat{A}$ years of data from the gravitational wave detectors EXPLORER and NAUTILUS. Physical Review D, 2013, 87, .	1.6	5
220	All-sky incoherent search for periodic signals with Explorer 2005 data. Classical and Quantum Gravity, 2008, 25, 114028.	1.5	4
221	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 \tilde{A} — 10 \hat{a} °21 on a 100 ms time scale., 2009,,.		4
222	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
223	Thermal compensation system in advanced and third generation gravitational wave interferometric detectors. Journal of Physics: Conference Series, 2019, 1226, 012019.	0.3	4
224	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
225	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	0.6	3
226	A new capacitive read-out for EXPLORER and NAUTILUS. Journal of Physics: Conference Series, 2006, 32, 89-93.	0.3	2
227	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
228	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
229	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
230	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
231	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , $2018, 21, 1$.		2
232	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
233	All-sky search of EXPLORER data: search for coincidences. Classical and Quantum Gravity, 2006, 23, S687-S692.	1.5	1
234	Status of the commissioning of the Virgo interferometer. , 2012, , .		1

#	Article	IF	CITATIONS
235	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
236	Thermal Effects and Other Wavefront Aberrations in Recycling Cavities. Astrophysics and Space Science Library, 2014, , 251-274.	1.0	1
237	PRESENT STATUS OF MINIGRAIL., 2006, , .		1
238	Acoustic detection of particles, the RAP experiment: present status and results. Journal of Physics: Conference Series, 2006, 39, 46-48.	0.3	0
239	First results of the RAP experiment (acoustic detection of particles) in the low temperature regime. Journal of Physics: Conference Series, 2006, 32, 393-397.	0.3	O
240	The RAP experiment: Acoustic Detection of Particles. Nuclear Physics, Section B, Proceedings Supplements, 2007, 172, 219-223.	0.5	0
241	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	O
242	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
243	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	O
244	Study and experiment on the alternative technique of frequency–dependent squeezing generation with EPR entanglement for Virgo. Journal of Physics: Conference Series, 2020, 1468, 012215.	0.3	0
245	NAUTILUS Recent Results. , 2002, , 403-408.		O
246	EXPLORER AND NAUTILUS: PRESENT STATUS., 2006,,.		0
247	EXPLORER and NAUTILUS GRAVITATIONAL WAVE DETECTORS - A STATUS REPORT. , 2008, , .		O
248	Advanced Virgo Status., 2017,,.		0