R Niall Tait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057289/publications.pdf Version: 2024-02-01

P NIALL TAIT

#	Article	IF	CITATIONS
1	Hot embossing of microfluidics in cyclic-olefin co-polymer using a wafer aligner-bonder. Microsystem Technologies, 2021, 27, 3899-3906.	2.0	8
2	Tri-layer contact photolithography process for high-resolution lift-off. Microelectronic Engineering, 2021, 241, 111545.	2.4	5
3	Direct thermal emission testing of aperiodic dielectric stack for narrowband thermal emission at mid-IR. Journal of Applied Physics, 2020, 127, .	2.5	7
4	Wafer-bonded surface plasmon waveguide sensors with in-plane microfluidic interfaces. Journal of Micromechanics and Microengineering, 2020, 30, 095004.	2.6	4
5	Reactive Ion Etching of Cytop and Investigation of Residual Microstructures. Journal of Microelectromechanical Systems, 2020, 29, 228-235.	2.5	6
6	Conductor-backed dielectric metasurface thermal emitters for mid-infrared spectroscopy. Journal of Applied Physics, 2020, 127, 033105.	2.5	2
7	Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off. Nanotechnology, 2019, 30, 054003.	2.6	2
8	Grating couplers fabricated by e-beam lithography for long-range surface plasmon waveguides embedded in a fluoropolymer. Applied Optics, 2019, 58, 2994.	1.8	10
9	Single-mode surface plasmon distributed feedback lasers. Nanoscale, 2018, 10, 5914-5922.	5.6	34
10	Long-Range Surface Plasmon Lasers. , 2018, , .		0
11	Fabrication of long range surface plasmon waveguide biosensors in a low-index fluoropolymer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 042601.	1.2	3
12	High-Q all-dielectric thermal emitters for mid-infrared gas-sensing applications. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 119.	1.5	17
13	Bloch Long-Range Surface Plasmon Polaritons on Metal Stripe Waveguides on a Multilayer Substrate. ACS Photonics, 2017, 4, 593-599.	6.6	30
14	Active Plasmonics, Plasmonic Amplification and Lasing. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 1-37.	0.1	0
15	Gain and bleaching investigation of IR-140 doped PMMA. , 2017, , .		0
16	Gain optimization, bleaching, and e-beam structuring of IR-140 doped PMMA and integration with plasmonic waveguides. Optical Materials Express, 2017, 7, 3963.	3.0	7
17	Active asymmetric plasmonic Bragg gratings. Proceedings of SPIE, 2016, , .	0.8	0
18	Surface plasmon distributed feedback lasers and parity-time symmetric gratings. , 2016, , .		0

Surface plasmon distributed feedback lasers and parity-time symmetric gratings. , 2016, , . 18

R NIALL TAIT

#	Article	IF	CITATIONS
19	Parity-time symmetry-broken Bragg grating operating with long-range surface plasmon polaritons. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	1
20	Unidirectional Bragg Gratings Using Parity-Time Symmetry Breaking in Plasmonic Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 48-59.	2.9	14
21	Fabrication of metal strip waveguides for optical and microwave data transmission. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 061208.	1.2	4
22	Fabrication of long-range surface plasmon-polariton Bragg gratings with microfluidic channels in Cytop claddings. Microelectronic Engineering, 2015, 135, 38-44.	2.4	12
23	Plasmonic Nanostructured Metal–Oxide–Semiconductor Reflection Modulators. Nano Letters, 2015, 15, 2304-2311.	9.1	56
24	Surface plasmon amplification and active nonreciprocal gratings. Proceedings of SPIE, 2015, , .	0.8	0
25	Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors. Journal of Applied Physics, 2015, 117, 163108.	2.5	3
26	Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 021201.	1.2	9
27	Characterization of grating-coupled long range surface plasmon polariton membrane waveguides. Optics Express, 2015, 23, 17421.	3.4	16
28	Fabrication of a plasmonic modulator incorporating an overlaid grating coupler. Nanotechnology, 2014, 25, 495202.	2.6	12
29	Spatially nonreciprocal Bragg gratings based on surface plasmons. Applied Physics Letters, 2014, 105, .	3.3	10
30	Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications. Optics Express, 2014, 22, 12452.	3.4	16
31	Biosensing using straight long-range surface plasmon waveguides. Optics Express, 2013, 21, 698.	3.4	112
32	Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab on A Chip, 2013, 13, 2541.	6.0	42
33	Long range surface plasmon polariton waveguides for hydrogen sensing. Proceedings of SPIE, 2013, , .	0.8	2
34	Solid state long range surface plasmon polariton single mode lasers. , 2013, , .		0
35	Grating coupler excitation of membrane supported long range surface plasmons. , 2012, , .		0
36	Fabrication of surface plasmon waveguides in CYTOP. Proceedings of SPIE, 2012, , .	0.8	5

R NIALL TAIT

#	Article	IF	CITATIONS
37	Long-range surface plasmon single-mode laser concepts. Journal of Applied Physics, 2012, 112, 063115.	2.5	12
38	Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide. Sensors and Actuators B: Chemical, 2012, 161, 285-291.	7.8	11
39	Integrated heaters for the thermal tuning of Bragg grating filters on siliconâ€onâ€insulator rib waveguides. Microwave and Optical Technology Letters, 2011, 53, 672-676.	1.4	6
40	Surface plasmon waveguide devices with Tg-bonded Cytop claddings. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 062601.	1.2	4
41	Design of hydrogen gas sensors based on surface plasmon waveguides. Proceedings of SPIE, 2011, , .	0.8	0
42	Characterization of biosensing waveguides on Cytop. , 2010, , .		0
43	Fabrication of surface plasmon waveguides and integrated components on Cytop. Microelectronic Engineering, 2010, 87, 1914-1921.	2.4	21
44	Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 729-735.	1.2	49
45	Controlled sacrificial sidewall surface micromachining for the release of high length-to-thickness aspect ratio bridges. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1195-1201.	1.2	1
46	Fabrication and mechanical properties of surface plasmon waveguide biosensors on thin CYTOP membranes. Proceedings of SPIE, 2010, , .	0.8	0
47	Surface plasmon waveguide Schottky detector. Optics Express, 2010, 18, 8505.	3.4	179
48	Mechanical Properties of Thin Free-Standing CYTOP Membranes. Journal of Microelectromechanical Systems, 2010, 19, 700-705.	2.5	11
49	Broadside excitation of surface plasmon waveguides on Cytop. Applied Physics Letters, 2009, 94, .	3.3	18
50	Fabrication of surface plasmon waveguides on thin CYTOP membranes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 614-619.	2.1	12
51	Hafnium Silicate Gate Insulators in Field Effect Sensors Used to Detect DNA Hybridization. ECS Transactions, 2009, 16, 441-450.	0.5	5
52	Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: Zeta potential and porosity changes near the channel walls. Journal of Chemical Physics, 2006, 125, 094714.	3.0	35
53	Using MEMS Capacitive Switches in Tunable RF Amplifiers. Eurasip Journal on Wireless Communications and Networking, 2006, 2006, 1.	2.4	9
54	Switchable patterned centre-conductor CPW filter using RF MEMS. Microwave and Optical Technology Letters, 2006, 48, 935-938.	1.4	6

R NIALL TAIT

#	Article	IF	CITATIONS
55	Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications. Applied Optics, 2002, 41, 2361.	2.1	18
56	Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical–electromechanical systems. Applied Optics, 2001, 40, 930.	2.1	37
57	Fabrication of Nanocolumns for Liquid Chromatography. Analytical Chemistry, 1998, 70, 3790-3797.	6.5	377