Lei Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057275/publications.pdf

Version: 2024-02-01

		567281	552781
27	702	15	26
papers	citations	h-index	g-index
29	29	29	823
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ligand-Assisted Formation of Soluble Mn(III) and Bixbyite-like Mn ₂ O ₃ by <i>Shewanella putrefaciens</i> CN32. Environmental Science & Environmental Scien	10.0	13
2	Unveiling the chemotactic response and mechanism of Shewanella oneidensis MR-1 to nitrobenzene. Journal of Hazardous Materials, 2022, 431, 128629.	12.4	5
3	Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. Journal of Hazardous Materials, 2021, 403, 123611.	12.4	19
4	Engineering a Rhamnose-Inducible System to Enhance the Extracellular Electron Transfer Ability of <i>Shewanella</i> Genus for Improved Cr(VI) Reduction. ACS ES&T Engineering, 2021, 1, 842-850.	7.6	14
5	Extracellular electron transfer via multiple electron shuttles in waterborne <i>Aeromonas hydrophila</i> for bioreduction of pollutants. Biotechnology and Bioengineering, 2021, 118, 4760-4770.	3.3	7
6	Anaerobic Respiration on Nitarsone in Aquatic Environments by Shewanella oneidensis MR-1 Lacking Known CÂ-As lyases. ACS ES&T Water, 2021, 1, 603-612.	4.6	2
7	Nest site selection and its implications for conservation of the endangered Oriental Stork <i>Ciconia boyciana</i> in Yellow River Delta, China. Bird Conservation International, 2020, 30, 323-334.	1.3	13
8	Modulation of the lifespan of <i>C. elegans</i> by the controlled release of nitric oxide. Chemical Science, 2020, 11, 8785-8792.	7.4	5
9	Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction. Process Biochemistry, 2020, 95, 108-114.	3.7	6
10	Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. Biosensors and Bioelectronics, 2020, 156, 112136.	10.1	6
11	CRISPRi System as an Efficient, Simple Platform for Rapid Identification of Genes Involved in Pollutant Transformation by <i>Aeromonas hydrophila</i> Sinvironmental Science & Camp; Technology, 2020, 54, 3306-3315.	10.0	21
12	Promoting bidirectional extracellular electron transfer of <i>Shewanella oneidensis</i> MRâ€1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnology and Bioengineering, 2020, 117, 1294-1303.	3.3	48
13	Developing a baseâ€editing system to expand the carbon source utilization spectra of <i>Shewanella oneidensis</i> MRâ€I for enhanced pollutant degradation. Biotechnology and Bioengineering, 2020, 117, 2389-2400.	3.3	29
14	Do Geese Facilitate or Compete with Wintering Hooded Cranes (Grus monacha) for Forage Resources?. Diversity, 2020, 12, 105.	1.7	5
15	Potential regulates metabolism and extracellular respiration of electroactive <i>Geobacter</i> biofilm. Biotechnology and Bioengineering, 2019, 116, 961-971.	3.3	17
16	Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. Environment International, 2019, 129, 86-94.	10.0	81
17	Parental exposure to TiO ₂ NPs promotes the multigenerational reproductive toxicity of Cd in <i>Caenorhabditis elegans via</i> bioaccumulation of Cd in germ cells. Environmental Science: Nano, 2019, 6, 1332-1342.	4.3	16
18	Sensing and Approaching Toxic Arsenate by <i>Shewanella putrefaciens</i> CN-32. Environmental Science &	10.0	12

#	Article	IF	CITATION
19	Transgenerational effects of diesel particulate matter on Caenorhabditis elegans through maternal and multigenerational exposure. Ecotoxicology and Environmental Safety, 2019, 170, 635-643.	6.0	33
20	Biogenic Synthesis of Pd-Based Nanoparticles with Enhanced Catalytic Activity. ACS Applied Nano Materials, 2018, 1, 1467-1475.	5.0	25
21	Framework of Cytochrome/Vitamin B ₂ Linker/Graphene for Robust Microbial Electricity Generation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35090-35098.	8.0	22
22	Graphene oxide antagonizes the toxic response to arsenic <i>via</i> and suppression of the arsenic-binding protein LEC-1 in <i>Caenorhabditis elegans</i> Environmental Science: Nano, 2018, 5, 1711-1728.	4.3	16
23	Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. Chemosphere, 2018, 211, 345-351.	8.2	24
24	TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicology and Environmental Safety, 2018, 162, 160-169.	6.0	29
25	Enhancing Extracellular Electron Transfer of <i>Shewanella oneidensis</i> MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environmental Science &	10.0	141
26	Rapid Release of Arsenite from Roxarsone Bioreduction by Exoelectrogenic Bacteria. Environmental Science and Technology Letters, 2017, 4, 350-355.	8.7	58
27	Anaerobic reduction of 2,6â€dinitrotoluene by <i>Shewanella oneidensis</i> MRâ€1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 2017, 114, 761-768.	3.3	35