
Stephan Reitzenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	2.2	152
2	Single photon sources for quantum radiometry: a brief review about the current state-of-the-art. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	3
3	Spin‣asing in Bimodal Quantum Dot Micropillar Cavities. Laser and Photonics Reviews, 2022, 16, .	4.4	7
4	A quantum key distribution testbed using a plug&play telecom-wavelength single-photon source. Applied Physics Reviews, 2022, 9, .	5.5	24
5	Design and fabrication of ridge waveguide-based nanobeam cavities for on-chip single-photon sources. Optics Express, 2022, 30, 11973.	1.7	4
6	Measuring higher-order photon correlations of faint quantum light: A short review. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 435, 128059.	0.9	5
7	Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots. Optics Express, 2022, 30, 15913.	1.7	20
8	Photonic neuromorphic computing using vertical cavity semiconductor lasers. Optical Materials Express, 2022, 12, 2395.	1.6	25
9	Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing [Invited]. Optical Materials Express, 2022, 12, 2793.	1.6	12
10	Extraction of silver losses at cryogenic temperatures through the optical characterization of silver-coated plasmonic nanolasers. Optics Express, 2022, 30, 21664.	1.7	1
11	Quantum Fluctuations and Lineshape Anomaly in a Highâ€≺i>β Silverâ€Coated InPâ€Based Metallic Nanolaser. Laser and Photonics Reviews, 2022, 16, .	4.4	6
12	Quantum Dot Single-Photon Emission Coupled into Single-Mode Fibers with 3D Printed Micro-Objectives. , 2021, , .		0
13	3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light Advanced Manufacturing, 2021, 2, 103.	2.2	26
14	Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters. APL Photonics, 2021, 6, .	3.0	29
15	Design optimization for bright electrically-driven quantum dot single-photon sources emitting in telecom O-band. Optics Express, 2021, 29, 6582.	1.7	10
16	High-performance deterministic in situ electron-beam lithography enabled by cathodoluminescence spectroscopy. Nano Express, 2021, 2, 014007.	1.2	12
17	Optical pumping of quantum dot micropillar lasers. Optics Express, 2021, 29, 9084.	1.7	7
18	Bimodal behavior of microlasers investigated with a two-channel photon-number-resolving transition-edge sensor system. Physical Review Research, 2021, 3, .	1.3	11

#	Article	IF	CITATIONS
19	A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. JPhys Photonics, 2021, 3, 024017.	2.2	36
20	Bright Electrically Controllable Quantumâ€Dotâ€Molecule Devices Fabricated by In Situ Electronâ€Beam Lithography. Advanced Quantum Technologies, 2021, 4, 2100002.	1.8	12
21	Spectral control of deterministically fabricated quantum dot waveguide systems using the quantum confined Stark effect. APL Photonics, 2021, 6, .	3.0	8
22	Physics and Applications of Highâ€Î² Micro―and Nanolasers. Advanced Optical Materials, 2021, 9, 2100415.	3.6	20
23	Boosting energy-time entanglement using coherent time-delayed feedback. Physical Review A, 2021, 103, .	1.0	4
24	Absolute calibration of a single-photon avalanche detector using a bright triggered single-photon source based on an InGaAs quantum dot. Optics Express, 2021, 29, 23500.	1.7	8
25	Quantum efficiency and oscillator strength of InGaAs quantum dots for single-photon sources emitting in the telecommunication O-band. Applied Physics Letters, 2021, 119, .	1.5	6
26	Quantum optical characterization of high- \hat{l}^2 silver-coated InGaAsP-based multiple quantum well metallic nanolasers. , 2021, , .		0
27	A Quantum Key Distribution Testbed Using Plug&Play Telecom-Wavelength Single-Photons. , 2021, , .		0
28	Neural Network Computing using a Semiconductor Multimode Laser. , 2021, , .		0
29	Neural network computing using a large-area VCSEL. , 2021, , .		0
30	The Design of an Electrically-Driven Single Photon Source of the 1.3-μm Spectral Range Based on a Vertical Microcavity with Intracavity Contacts. Technical Physics Letters, 2021, 47, 222-226.	0.2	1
31	Design of electrically driven single-photon source based on intra-cavity contacted microcavity with oxide-confined optical apertures emitting at 1.3 μm. Journal of Physics: Conference Series, 2021, 2103, 012181.	0.3	0
32	Cesiumâ€Vaporâ€Based Delay of Single Photons Emitted by Deterministically Fabricated Quantum Dot Microlenses. Advanced Quantum Technologies, 2020, 3, 1900071.	1.8	5
33	Development of Highly Homogenous Quantum Dot Micropillar Arrays for Optical Reservoir Computing. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-9.	1.9	23
34	Development of site-controlled quantum dot arrays acting as scalable sources of indistinguishable photons. APL Photonics, 2020, 5, 096107.	3.0	16
35	Developing a photonic hardware platform for brain-inspired computing based on 5 × 5 VCSEL arrays. JPhys Photonics, 2020, 2, 044002.	2.2	25
36	Entanglement robustness to excitonic spin precession in a quantum dot. Physical Review B, 2020, 102, .	1.1	2

#	Article	IF	CITATIONS
37	Quantum integrated photonic circuits. Semiconductors and Semimetals, 2020, 105, 153-234.	0.4	3
38	Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives. APL Photonics, 2020, 5, .	3.0	35
39	Deterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-band. Applied Physics Letters, 2020, 117, .	1.5	13
40	Thermal stability of emission from single InGaAs/GaAs quantum dots at the telecom O-band. Scientific Reports, 2020, 10, 21816.	1.6	13
41	Thresholdless Transition to Coherent Emission at Telecom Wavelengths from Coaxial Nanolasers with Excitation Power Dependent βâ€Factors. Laser and Photonics Reviews, 2020, 14, 2000065.	4.4	15
42	Quantum light sources based on deterministic microlenses structures with (111) In(Ga)As and AlInAs QDs Journal of Physics: Conference Series, 2020, 1461, 012028.	0.3	0
43	Deterministically fabricated solid-state quantum-light sources. Journal of Physics Condensed Matter, 2020, 32, 153003.	0.7	41
44	Tools for the performance optimization of single-photon quantum key distribution. Npj Quantum Information, 2020, 6, .	2.8	40
45	Directional Singleâ€Photon Emission from Deterministic Quantum Dot Waveguide Structures. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000115.	1.2	0
46	Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band. Applied Physics Letters, 2020, 116, .	1.5	27
47	Plug&Play Fiberâ€Coupled 73ÂkHz Singleâ€Photon Source Operating in the Telecom Oâ€Band. Advanced Quantum Technologies, 2020, 3, 2000018.	1.8	34
48	Interplay between emission wavelength and s-p splitting in MOCVD-grown InGaAs/GaAs quantum dots emitting above 1.3 <i>î¼</i> m. Applied Physics Letters, 2020, 116, .	1.5	7
49	Deterministic Quantum Devices for Optical Quantum Communication. Springer Series in Solid-state Sciences, 2020, , 285-359.	0.3	2
50	Radiometric characterization of a triggered narrow-bandwidth single-photon source and its use for the calibration of silicon single-photon avalanche detectors. Metrologia, 2020, 57, 055001.	0.6	7
51	Deterministically fabricated spectrally-tunable quantum dot based single-photon source. Optical Materials Express, 2020, 10, 76.	1.6	26
52	Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources. Springer Series in Solid-state Sciences, 2020, , 53-90.	0.3	2
53	Design of electrically driven single photon source based on dielectric passive cavity structure at 1.3 μm. Journal of Physics: Conference Series, 2020, 1697, 012179.	0.3	0
54	Heterogeneous integrated silicon photonic circuits with deterministically fabricated single quantum dot single-photon sources. , 2020, , .		0

#	Article	IF	CITATIONS
55	Ground-state resonant two-photon transitions in wurtzite GaN/AlN quantum dots. Physical Review B, 2019, 99, .	1.1	3
56	Directional Emission of a Deterministically Fabricated Quantum Dot–Bragg Reflection Multimode Waveguide System. ACS Photonics, 2019, 6, 2231-2237.	3.2	21
57	Photon-number parity of heralded single photons from a Bragg-reflection waveguide reconstructed loss-tolerantly via moment generating function. New Journal of Physics, 2019, 21, 103025.	1.2	3
58	Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line. Scientific Reports, 2019, 9, 13728.	1.6	13
59	Nonclassical Light Sources Based on Selectively Positioned Deterministic Microlens Structures and (111) In(Ga)As Quantum Dots. Semiconductors, 2019, 53, 1304-1307.	0.2	1
60	Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si ₃ N ₄ Quantum Photonic Circuits. Nano Letters, 2019, 19, 7164-7172.	4.5	53
61	Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths. Physical Review B, 2019, 100, .	1.1	12
62	Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity. Scientific Reports, 2019, 9, 631.	1.6	6
63	Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory. Nanophotonics, 2019, 8, 655-683.	2.9	41
64	Wigner Time Delay Induced by a Single Quantum Dot. Physical Review Letters, 2019, 122, 107401.	2.9	8
65	Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels. Nature Communications, 2019, 10, 1539.	5.8	25
66	Quantum dot micropillar lasers. Semiconductor Science and Technology, 2019, 34, 073001.	1.0	12
67	Suppressed antibunching via spectral filtering: An analytical study in the two-photon Mollow regime. Physical Review A, 2019, 99, .	1.0	4
68	Numerical Investigation of Light Emission from Quantum Dots Embedded into Onâ€Chip, Lowâ€Indexâ€Contrast Optical Waveguides. Physica Status Solidi (B): Basic Research, 2019, 256, 1800437.	0.7	7
69	Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New Journal of Physics, 2019, 21, 035007.	1.2	31
70	Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications. Optics Express, 2019, 27, 26772.	1.7	24
71	Stochastic polarization switching induced by optical injection in bimodal quantum-dot micropillar lasers. Optics Express, 2019, 27, 28816.	1.7	11
72	Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings. Optics Express, 2019, 27, 36824.	1.7	55

#	Article	IF	CITATIONS
73	Micropillar lasers with site-controlled quantum dots as active medium. Optica, 2019, 6, 404.	4.8	8
74	Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. , 2019, , .		1
75	Heterogeneous integrated quantum photonic devices with single, deterministically positioned InAs quantum dots. , 2019, , .		0
76	Photon-number-resolving transition-edge sensors for the metrology of photonic microstructures based on semiconductor quantum dots. , 2019, , .		0
77	Generation of maximally entangled states and coherent control in quantum dot microlenses. Applied Physics Letters, 2018, 112, .	1.5	27
78	A stand-alone fiber-coupled single-photon source. Scientific Reports, 2018, 8, 1340.	1.6	68
79	Micropillars with a controlled number of site-controlled quantum dots. Applied Physics Letters, 2018, 112, .	1.5	11
80	A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nature Communications, 2018, 9, 564.	5.8	50
81	Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Optics Communications, 2018, 413, 162-166.	1.0	15
82	Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography. Nano Letters, 2018, 18, 2336-2342.	4.5	85
83	Controlling the gain contribution of background emitters in few-quantum-dot microlasers. New Journal of Physics, 2018, 20, 023036.	1.2	3
84	Quantum-Optical Spectroscopy of a Two-Level System Using an Electrically Driven Micropillar Laser as Resonant Excitation Source. , 2018, , .		0
85	Fabrication of dense diameter-tuned quantum dot micropillar arrays for applications in photonic information processing. APL Photonics, 2018, 3, .	3.0	23
86	Spectroscopy of Single AllnAs and (111)-Oriented InGaAs Quantum Dots. Semiconductors, 2018, 52, 1437-1441.	0.2	0
87	Quantum-optical influences in optoelectronics—An introduction. Applied Physics Reviews, 2018, 5, .	5.5	32
88	Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback. Optics Express, 2018, 26, 22457.	1.7	17
89	Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources. Journal of Low Temperature Physics, 2018, 193, 1243-1250.	0.6	43
90	Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor. Physical Review Applied, 2018, 9, .	1.5	31

#	Article	IF	CITATIONS
91	Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber. Optics Express, 2018, 26, 8479.	1.7	50
92	Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Advances, 2018, 8, 085205.	0.6	33
93	Photon-Number-Resolved Measurement of an Exciton-Polariton Condensate. Physical Review Letters, 2018, 121, 047401.	2.9	28
94	Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source. Light: Science and Applications, 2018, 7, 41.	7.7	26
95	Determining the linewidth enhancement factor via optical feedback in quantum dot micropillar lasers. Optics Express, 2018, 26, 31363.	1.7	4
96	Semiconductor quantum dot to fiber coupling system for 1.3 um range. , 2018, , .		0
97	Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source. ACS Photonics, 2017, 4, 1327-1332.	3.2	63
98	A bright triggered twin-photon source in the solid state. Nature Communications, 2017, 8, 14870.	5.8	58
99	Two-photon interference from remote deterministic quantum dot microlenses. Applied Physics Letters, 2017, 110, .	1.5	30
100	Electrically Tunable Single-Photon Source Triggered by a Monolithically Integrated Quantum Dot Microlaser. ACS Photonics, 2017, 4, 790-794.	3.2	31
101	Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot–microcavity system. Physical Review B, 2017, 95, .	1.1	16
102	Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique. Applied Physics Letters, 2017, 110, .	1.5	20
103	Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light: Science and Applications, 2017, 6, e17030-e17030.	7.7	79
104	Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation. Physical Review X, 2017, 7, .	2.8	18
105	Path-Controlled Time Reordering of Paired Photons in a Dressed Three-Level Cascade. Physical Review Letters, 2017, 118, 233601.	2.9	30
106	Strong light-matter coupling in the presence of lasing. Physical Review A, 2017, 96, .	1.0	20
107	Subminiature emitters based on a single (111) In(Ga)As quantum dot and hybrid microcavity. Semiconductors, 2017, 51, 1399-1402.	0.2	0
108	Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror. Applied Physics Letters, 2017, 111, .	1.5	23

#	Article	IF	CITATIONS
109	Hybrid microcavity for superminiature single quantum dot based emitters. Optoelectronics, Instrumentation and Data Processing, 2017, 53, 178-183.	0.2	1
110	Accessing the dark exciton spin in deterministic quantum-dot microlenses. APL Photonics, 2017, 2, .	3.0	28
111	High- $\hat{1}^2$ quantum dot-microlasers subject to time-delayed optical feedback. , 2017, , .		0
112	High-β micropillar lasers with site-controlled quantum dots fabricated via a buried stressor approach. , 2017, , .		0
113	InGaAs quantum-dot micropillar emitters: From spontaneous emission and superradiance to lasing. , 2017, , .		0
114	Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot. Optics Express, 2017, 25, 31122.	1.7	26
115	On-chip optoelectronic feedback in a micropillar laser-detector assembly. Optica, 2017, 4, 303.	4.8	16
116	A bright triggered twin-photon source in the solid state. , 2017, , .		1
117	Strong delay of quantum dot single photons in cesium vapor. , 2017, , .		0
118	Lasing in micro- and nano-lasers. , 2017, , .		0
119	Two-photon interference from remote deterministic quantum dot microlenses. , 2017, , .		0
120	Single-Photon Sources Based on Deterministic Quantum-Dot Microlenses. Nano-optics and Nanophotonics, 2017, , 199-232.	0.2	5
121	Optimizing the InGaAs/GaAs Quantum Dots for 1.3 μm Emission. Acta Physica Polonica A, 2017, 132, 386-390.	0.2	5
122	Synchronization of Mutually Coupled High-Î 2 Quantum Dot Microlasers. , 2017, , .		0
123	Mode switching in bimodal microcavities and its connection to Bose condensation. , 2017, , .		0
124	Injection Locking of High-β Quantum Dot Microlasers. , 2016, , .		0
125	Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses. Technologies, 2016, 4, 1.	3.0	21
126	Cavity assisted emission of single, paired and heralded photons from a single quantum dot device. Optics Express, 2016, 24, 25446.	1.7	15

#	Article	IF	CITATIONS
127	Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses. ACS Photonics, 2016, 3, 2461-2466.	3.2	35
128	Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses. Applied Physics Letters, 2016, 108, .	1.5	31
129	On-chip light detection using monolithically integrated quantum dot micropillars. Applied Physics Letters, 2016, 108, .	1.5	7
130	Polariton condensate coherence in planar microcavities in a magnetic field. Semiconductors, 2016, 50, 1609-1613.	0.2	9
131	An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics, 2016, 1, .	3.0	60
132	CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4 K and room temperature. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	15
133	Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography. Nanotechnology, 2016, 27, 195301.	1.3	20
134	Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures. Semiconductor Science and Technology, 2016, 31, 095007.	1.0	4
135	Mode-switching induced super-thermal bunching in quantum-dot microlasers. New Journal of Physics, 2016, 18, 063011.	1.2	45
136	All-optical neuromorphic computing in optical networks of semiconductor lasers. , 2016, , .		2
137	Photon-statistics excitation spectroscopy of a single two-level system. Physical Review B, 2016, 93, .	1.1	7
138	Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments. Physical Review Letters, 2016, 116, 033601.	2.9	144
139	Injection Locking of Quantum-Dot Microlasers Operating in the Few-Photon Regime. Physical Review Applied, 2016, 6, .	1.5	18
140	Quantum dot micropillar cavities with quality factors exceeding 250,000. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	46
141	Probing the carrier transfer processes in a self-assembled system with In 0.3 Ga 0.7 As/GaAs quantum dots by photoluminescence excitation spectroscopy. Superlattices and Microstructures, 2016, 93, 214-220.	1.4	2
142	Controlling the Biexciton-Exciton Cascade Kinetics in a Quantum Dot via Coupling to a Microcavity Optical Mode. Acta Physica Polonica A, 2016, 129, A-44-A-47.	0.2	1
143	Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot. Optica, 2015, 2, 1072.	4.8	22
144	Compensation of phonon-induced renormalization of vacuum Rabi splitting in large quantum dots: Towards temperature-stable strong coupling in the solid state with quantum dot-micropillars. Physical Review B, 2015, 92, .	1.1	10

#	Article	IF	CITATIONS
145	Publisher's Note: Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers [Phys. Rev. A 91 , 043840 (2015)]. Physical Review A, 2015, 91, .	1.0	0
146	Strong charge-carrier localization in InAs/GaAs submonolayer stacks prepared by Sb-assisted metalorganic vapor-phase epitaxy. Physical Review B, 2015, 91, .	1.1	11
147	Resolution and alignment accuracy of low-temperature <i>in situ</i> electron beam lithography for nanophotonic device fabrication. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	39
148	Advanced <i>in-situ</i> electron-beam lithography for deterministic nanophotonic device processing. Review of Scientific Instruments, 2015, 86, 073903.	0.6	17
149	Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser. Applied Physics Letters, 2015, 107, .	1.5	52
150	An electrically pumped polariton laser. , 2015, , .		1
151	Sub-kT Switching in Asymmetric Y-Transistors With Internal Feedback Coupling. IEEE Journal of the Electron Devices Society, 2015, 3, 158-163.	1.2	2
152	Photocurrent readout and electro-optical tuning of resonantly excited exciton polaritons in a trap. Physical Review B, 2015, 91, .	1.1	4
153	Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities. Physical Review B, 2015, 91, .	1.1	13
154	Operating single quantum emitters with a compact Stirling cryocooler. Review of Scientific Instruments, 2015, 86, 013113.	0.6	27
155	Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers. Physical Review A, 2015, 91, .	1.0	13
156	A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 681-689.	1.9	17
157	Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nature Communications, 2015, 6, 7662.	5.8	252
158	All-optical depletion of dark excitons from a semiconductor quantum dot. Applied Physics Letters, 2015, 106, .	1.5	21
159	Indistinguishable Photons from Deterministically Fabricated Quantum Dot Microlenses. , 2015, , .		0
160	Advanced Quantum Light Sources: Modelling and Realization by Deterministic Nanofabrication Technologies. , 2014, , .		0
161	Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment. New Journal of Physics, 2014, 16, 043003.	1.2	41
162	Free Space Quantum Key Distribution over 500 Meters using Electrically Triggered Quantum Dot Single-Photon Sources. , 2014, , .		0

#	Article	IF	CITATIONS
163	Boosting the photon-extraction efficiency of nanophotonic structures by deterministic microlenses. , 2014, , .		0
164	Semiconductor Exciton-Polariton Lasers. , 2014, , .		0
165	On-chip quantum optics with integrated electrically driven microlasers. , 2014, , .		0
166	Polariton Laser Diodes. , 2014, , .		0
167	Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths. Physical Review B, 2014, 89, .	1.1	56
168	Study of high-resolution electron-beam resists for applications in low-temperature lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	11
169	Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots. Physical Review B, 2014, 90, .	1.1	16
170	Exciton-polariton laser diodes. , 2014, , .		2
171	Two Photon Interference from Semiconductor Quantum Dots. , 2014, , .		0
172	Fabrication of Deterministic Quantum Light Sources using Cathodoluminescence Lithography. , 2014, ,		0
173	Steering photon statistics in single quantum dots: From one- to two-photon emission. Physical Review B, 2013, 87, .	1.1	41
174	Electrically driven exciton-polariton lasers. , 2013, , .		0
175	Magnetic-field interaction of spatially confined quantum-well exciton-polaritons. Journal of Physics: Conference Series, 2013, 456, 012033.	0.3	5
176	Self-aligned quantum-dot growth for single-photon sources. , 2013, , .		0
177	Nonlinear emission characteristics of quantum dot–micropillar lasers in the presence of polarized optical feedback. New Journal of Physics, 2013, 15, 025030.	1.2	15
178	Electroluminescence from spatially confined exciton polaritons in a textured microcavity. Applied Physics Letters, 2013, 102, .	1.5	16
179	An electrically pumped polariton laser. Nature, 2013, 497, 348-352.	13.7	420
180	Microcavity controlled coupling of excitonic qubits. Nature Communications, 2013, 4, 1747.	5.8	49

#	Article	IF	CITATIONS
181	On-Chip Quantum Optics using Electrically Driven Quantum Dot - Micropillar Cavities. , 2013, , .		0
182	Room temperature polariton light emitting diode with integrated tunnel junction. Optics Express, 2013, 21, 31098.	1.7	10
183	Exciton-polariton lasers in Magnetic Fields. , 2013, , .		2
184	Mode selection in electrically driven quantum dot microring cavities. Optics Express, 2013, 21, 15951.	1.7	25
185	On-chip quantum optics with electrically driven quantum dot micropillar cavities. , 2013, , .		0
186	High beta lasing in micropillar cavities with adiabatic layer design. Applied Physics Letters, 2013, 102, 052114.	1.5	20
187	Free space quantum key distribution over 500 meters using electrically driven quantum dot single photon sources. , 2013, , .		0
188	Single Photon Delayed Feedback: A Way to Stabilize Intrinsic Quantum Cavity Electrodynamics. Physical Review Letters, 2013, 110, 013601.	2.9	70
189	<i>In situ</i> electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Applied Physics Letters, 2013, 102, .	1.5	94
190	Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots. Physical Review B, 2013, 87, .	1.1	21
191	Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots. Applied Physics Letters, 2013, 103, 191113.	1.5	7
192	Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition. Physical Review A, 2013, 87, .	1.0	51
193	On hip Quantum Optics with Quantum Dot Microcavities. Advanced Materials, 2013, 25, 707-710.	11.1	54
194	Coherence dynamics and quantum-to-classical crossover in an exciton–cavity system in the quantum strong coupling regime. New Journal of Physics, 2013, 15, 045013.	1.2	11
195	Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments. Proceedings of SPIE, 2013, , .	0.8	0
196	An electrically driven polariton laser. , 2013, , .		1
197	Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy. Nanotechnology, 2012, 23, 015605.	1.3	21
198	Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Applied Physics Letters, 2012, 100, .	1.5	47

#	Article	IF	CITATIONS
199	Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Applied Physics Letters, 2012, 101, .	1.5	44
200	Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots. Applied Physics Letters, 2012, 101, .	1.5	30
201	Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers. Applied Physics Letters, 2012, 101, .	1.5	49
202	Characterization of two-threshold behavior of the emission from a GaAs microcavity. Physical Review B, 2012, 85, .	1.1	56
203	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Applied Physics Letters, 2012, 100, .	1.5	41
204	Bloch-Wave Engineering of Quantum Dot Micropillars for Cavity Quantum Electrodynamics Experiments. Physical Review Letters, 2012, 108, 057402.	2.9	63
205	Towards intermediate-band formation in solar cells with AlGaInAs quantum dots. , 2012, , .		0
206	AlGaInAs quantum dot solar cells: tailoring quantum dots for intermediate band formation. Semiconductor Science and Technology, 2012, 27, 032002.	1.0	8
207	Single photon sources for quantum information applications. , 2012, , .		0
208	Highly efficient quantum dot micropillar lasers. , 2012, , 117-153.		0
209	Quantum dot microlasers with external feedback: a chaotic system close to the quantum limit. Proceedings of SPIE, 2012, , .	0.8	0
210	Coherence signatures and density-dependent interaction in a dynamical exciton-polariton condensate. Physical Review B, 2012, 86, .	1.1	24
211	Semiconductor Quantum Dot–Microcavities for Quantum Optics in Solid State. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1733-1746.	1.9	36
212	Multiexcitonic emission from single elongated InGaAs/GaAs quantum dots. Journal of Applied Physics, 2012, 111, 063522.	1.1	2
213	Quantum dot $\hat{a} \in$ " Microlasers with external feedback $\hat{a} \in$ " A chaotic system close to the quantum limit. , 2012, , .		0
214	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. , 2012, , .		0
215	Single quantum dot photocurrent spectroscopy in the cavity quantum electrodynamics regime. Physical Review B, 2012, 86, .	1.1	4
216	In(Ga)As/GaAs siteâ€controlled quantum dots with tailored morphology and high optical quality. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2379-2386.	0.8	19

#	Article	IF	CITATIONS
217	Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 2012, 14, 083001.	1.2	80
218	LIMITLESS RANGE QUANTUM COMMUNICATIONS: STEPS TOWARDS A SOLID STATE QUANTUM REPEATER. , 2012, , .		0
219	Bloch-wave engineered submicron diameter micropillars with quality factors exceeding 10,000. , 2011, ,		0
220	Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Physical Review B, 2011, 84, .	1.1	39
221	Dephasing of Triplet-Sideband Optical Emission of a Resonantly Driven <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>InAs</mml:mi><mml:mo>/</mml:mo><mml:mi>GaAs</mml:mi>Quantum Dot inside a Microcavity. Physical Review Letters. 2011, 106, 247402.</mml:math 	2.9	142
222	Observing chaos for quantum-dot microlasers with external feedback. Nature Communications, 2011, 2, 366.	5.8	68
223	Extrapolation of the intensity autocorrelation function of a quantum-dot micropillar laser into the the the the the main emission regime. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1404.	0.9	10
224	Magneto-optical cavity quantum electrodynamics effects in quantum dot - micropillar systems. Journal of Physics: Conference Series, 2011, 334, 012011.	0.3	1
225	Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities. , 2011, , .		1
226	Towards a Terahertz Room-Temperature Integrated Source. Procedia Computer Science, 2011, 7, 205-206.	1.2	0
227	Properties of GaN Nanowires Grown by Molecular Beam Epitaxy. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 878-888.	1.9	104
228	Electrically Driven Quantum Dot Micropillar Light Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1670-1680.	1.9	17
229	Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Applied Physics Letters, 2011, 98, .	1.5	61
230	Highly indistinguishable photons from a quantum dot in a microcavity. Physica Status Solidi (B): Basic Research, 2011, 248, 867-871.	0.7	8
231	Microcavity mode structure investigations with high spatial resolution. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1239-1241.	0.8	2
232	Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices. Journal of Crystal Growth, 2011, 323, 194-197.	0.7	13
233	Quantum-dot-induced phase shift in a pillar microcavity. Physical Review A, 2011, 84, .	1.0	80
234	Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity. , 2011, , .		0

#	Article	IF	CITATIONS
235	Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity. Physical Review Letters, 2011, 106, 233601.	2.9	118
236	From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1804-1809.	3.3	68
237	In-plane manipulation of quantum dots in high quality laterally contacted micropillar cavities. Applied Physics Letters, 2011, 98, 191111.	1.5	2
238	Temperature Dependence of Photoluminescence from Epitaxial InGaAs/GaAs Quantum Dots with High Lateral Aspect Ratio. Acta Physica Polonica A, 2011, 120, 883-887.	0.2	6
239	Non-Markovian spontaneous emission from a single quantum dot. , 2011, , .		0
240	cQED enhanced light detection and emission in electrically contacted quantum dot micropillars. , 2010, , .		0
241	Highly efficient electrically triggered quantum dot micropillar single photon source. Journal of Physics: Conference Series, 2010, 245, 012005.	0.3	2
242	Non-resonant cavity-quantum dot coupling. Journal of Physics: Conference Series, 2010, 210, 012058.	0.3	0
243	Semiconductor quantum light emitters and sensors. , 2010, , .		0
244	Up on the Jaynes-Cummings ladder of an exciton-cavity system. Proceedings of SPIE, 2010, , .	0.8	1
245	Highly Efficient Electrically Driven Quantum Dot Micropillar Single Photon Sources. , 2010, , .		0
246	Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Research, 2010, 3, 528-536.	5.8	161
247	Numerical and Experimental Study of the \$Q\$ Factor of High-\$Q\$ Micropillar Cavities. IEEE Journal of Quantum Electronics, 2010, 46, 1470-1483.	1.0	37
248	Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Materials, 2010, 9, 304-308.	13.3	138
249	Spontaneously Localized Photonic Modes Due to Disorder in the Dielectric Constant. , 2010, , .		0
250	Time-resolved photoluminescence investigations on HfO ₂ -capped InP nanowires. Nanotechnology, 2010, 21, 105711.	1.3	18
251	Whispering gallery mode lasing in electrically driven quantum dot micropillars. Applied Physics Letters, 2010, 97, .	1.5	34
252	Intrinsic feedback and bistable switching in Y-branched nanojunctions. Physical Review B, 2010, 81, .	1.1	2

#	Article	IF	CITATIONS
253	Ultrafast tracking of second-order photon correlations in the emission of quantum-dot microresonator lasers. Physical Review B, 2010, 81, .	1.1	38
254	Exciton spin state mediated photon-photon coupling in a strongly coupled quantum dot microcavity system. Physical Review B, 2010, 82, .	1.1	29
255	Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Applied Physics Letters, 2010, 96, .	1.5	176
256	Quantum dot micropillars. Journal Physics D: Applied Physics, 2010, 43, 033001.	1.3	134
257	Nonlinear photoluminescence spectra from a quantum-dot–cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED. Physical Review B, 2010, 81, .	1.1	31
258	Electrically driven quantum dot micropillar single photon sources. , 2010, , .		0
259	Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode. Physical Review B, 2010, 82, .	1.1	33
260	Strong coupling in a quantum dot micropillar system under electrical current injection. Applied Physics Letters, 2010, 96, 221102.	1.5	13
261	Single photon emission from positioned GaAs/AlGaAs photonic nanowires. Applied Physics Letters, 2010, 96, 211117.	1.5	77
262	Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities. Applied Physics Letters, 2010, 96, 071103.	1.5	34
263	Exciton-polariton laser diodes. , 2010, , .		0
264	Emission characteristics of a highly correlated system of a quantum dot coupled to two distinct micropillar cavity modes. Physical Review B, 2010, 82, .	1.1	5
265	Quantum efficiency and oscillator strength of site-controlled InAs quantum dots. Applied Physics Letters, 2010, 96, .	1.5	34
266	Polarization-dependent strong coupling in elliptical high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>micropillar cavities. Physical Review B, 2010, 82, .</mml:math 	1.1	21
267	Magneto-Optical Cavity Quantum Electrodynamics Effects in Quantum Dot Micropillar Systems. , 2010, , .		0
268	Quantum Dot Microlasers. , 2009, , .		0
269	Oscillatory variations in the Q factors of high quality micropillar cavities. Applied Physics Letters, 2009, 94, 061108.	1.5	24
270	Resonantly probing micropillar cavity modes by photocurrent spectroscopy. Applied Physics Letters, 2009, 94, 221103.	1.5	9

#	Article	IF	CITATIONS
271	Optically controlled semiconductor spin qubits for quantum information processing. Physica Scripta, 2009, T137, 014010.	1.2	9
272	Resonantly probing micropillar cavity modes by photocurrent spectroscopy. , 2009, , .		0
273	Optically pumped lasing from a single pillar microcavity with InGaAs/GaAs quantum well potential fluctuation quantum dots. Journal of Applied Physics, 2009, 105, 053513.	1.1	4
274	Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology, 2009, 20, 434012.	1.3	71
275	Single quantum dot controlled gain modulation in highâ€∢i>Q micropillar lasers. Physica Status Solidi (B): Basic Research, 2009, 246, 277-282.	0.7	3
276	Coherence length of high-βsemiconductor microcavity lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 568-571.	0.8	0
277	Weak coupling effects in highâ€Q electrically driven micropillars. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 381-384.	0.8	7
278	Ultrafast intensity correlation measurements of quantum dot microcavity lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 399-402.	0.8	0
279	Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460, 245-249.	13.7	194
280	Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photonics, 2009, 3, 724-728.	15.6	163
281	The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system. Optics Express, 2009, 17, 12821.	1.7	29
282	Control of the Strong Light-Matter Interaction between an Elongated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>In</mml:mi><mml:mn>0.3</mml:mn></mml:msub><mml:msub><mml:n Dot and a Micropillar Cavity Using External Magnetic Fields. Physical Review Letters, 2009, 103, 127401.</mml:n </mml:msub></mml:math 	ni>23 <td>nl:mi><mml:r< td=""></mml:r<></td>	nl:mi> <mml:r< td=""></mml:r<>
283	Cavity QED in Quantum Dot - Micropillar Cavity Systems. Nanoscience and Technology, 2009, , 267-297.	1.5	2
284	Post-Selected Indistinguishable Photons from the Resonance Fluorescence of a Single Quantum Dot in a Microcavity. Physical Review Letters, 2009, 103, 167402.	2.9	226
285	Single photon emission from a site-controlled quantum dot-micropillar cavity system. Applied Physics Letters, 2009, 94, 111111.	1.5	86
286	Quantum dot micropillar lasers. Proceedings of SPIE, 2009, , .	0.8	0
287	Semiconductor Cavity Quantum Electrodynamics with Single Quantum Dots. Acta Physica Polonica A, 2009, 116, 445-450.	0.2	1
288	Coherent dynamics of one and two-photon states in a strongly coupled single quantum dot-cavity system. , 2009, , .		0

Stephan Reitzenstein

#	Article	IF	CITATIONS
289	Cavity Quantum Electrodynamics in Electrically Driven Quantum Dot-Micropillar Cavities. , 2009, , .		0
290	Single quantum dot controlled lasing effects in high-Q micropillar cavities. Optics Express, 2008, 16, 4848.	1.7	72
291	Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Optics Express, 2008, 16, 15006.	1.7	70
292	Influence of the spontaneous optical emission factorβon the first-order coherence of a semiconductor microcavity laser. Physical Review B, 2008, 78, .	1.1	24
293	Electrically driven quantum dot microcavities for future devices — status, potential and challenges. , 2008, , .		0
294	Lithographic alignment to site-controlled quantum dots for device integration. Applied Physics Letters, 2008, 92, .	1.5	96
295	Cavity quantum electrodynamics in electrically addressed quantum dot-micropillar cavities. , 2008, , .		0
296	Electrically driven quantum dot high quality factor micropillar cavities. , 2008, , .		0
297	Recombination dynamics in wurtzite InP nanowires. Physical Review B, 2008, 77, .	1.1	16
298	Low threshold electrically pumped quantum dot-micropillar lasers. Applied Physics Letters, 2008, 93, .	1.5	90
299	Electrically driven high-Q quantum dot-micropillar cavities. Applied Physics Letters, 2008, 92, .	1.5	135
300	Emission Characteristics, Photon Statistics and Coherence Properties of high-β Semiconductor Micropillar Lasers. , 2008, , 3-15.		0
301	Coherence Properties of High-Beta Semiconductor Micropillar Lasers. , 2007, , .		0
302	Vertically emitting AlAs/GaAs microcavities with quality factors exceeding 110.000. , 2007, , .		0
303	Time resolved microphotoluminescence studies of single InP nanowires grown by low pressure metal organic chemical vapor deposition. Applied Physics Letters, 2007, 91, .	1.5	24
304	Laser emission from quantum dots in high-Q micropillar cavities. , 2007, , .		0
305	Time-Resolved Spectroscopy of Epitaxial InP Nanowires. , 2007, , .		0
306	Strong coupling of single quantum dots to micropillars. , 2007, , .		0

#	Article	IF	CITATIONS
307	High Q whispering gallery modes in GaAs/AlAs pillar microcavities. Optics Express, 2007, 15, 17291.	1.7	31
308	Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime. Physical Review Letters, 2007, 98, 117402.	2.9	309
309	Photon Statistics of Semiconductor Microcavity Lasers. Physical Review Letters, 2007, 98, 043906.	2.9	191
310	Coherence properties of high-β elliptical semiconductor micropillar lasers. Applied Physics Letters, 2007, 90, 161111.	1.5	23
311	AlAsâ•GaAs micropillar cavities with quality factors exceeding 150.000. Applied Physics Letters, 2007, 90, 251109.	1.5	278
312	Interference effects in the emission spectra of quantum dots in high-quality cavities. JETP Letters, 2007, 84, 494-499.	0.4	9
313	High-Q whispering gallery modes in pillar microcavities. Annales De Physique, 2007, 32, 123-126.	0.2	0
314	Coherent photonic coupling of semiconductor quantum dots. Optics Letters, 2006, 31, 1738.	1.7	43
315	Coherent photonic coupling of semiconductor quantum dots: erratum. Optics Letters, 2006, 31, 3507.	1.7	1
316	Strong and weak coupling of single quantum dot excitons in pillar microcavities. Physica Status Solidi (B): Basic Research, 2006, 243, 2224-2228.	0.7	7
317	Recent advances in nanophotonics—From physics to devices. Current Applied Physics, 2006, 6, e166-e171.	1.1	1
318	Magnetooptical investigations of single self assembled In0.3Ga0.7As quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 131-134.	1.3	4
319	Investigation of strong coupling between single quantum dot excitons and single photons in pillar microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 471-475.	1.3	7
320	Strong coupling in a single quantum dot semiconductor microcavity system. , 2006, , .		2
321	Lasing in high-Q quantum-dot micropillar cavities. Applied Physics Letters, 2006, 89, 051107.	1.5	92
322	Strong exciton-photon coupling of In <inf>0.43</inf> Ga <inf>0.57</inf> As quantum dots in high quality micropillar cavities. , 2006, , .		0
323	Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. Biopolymers, 2005, 78, 237-248.	1.2	75
324	Static memory element based on electron Y-branch switch. Electronics Letters, 2005, 41, 303.	0.5	4

#	Article	IF	CITATIONS
325	Semiconductor quantum dot micropillar cavities for quantum electrodynamic experiments. , 2005, , .		1
326	Nonlinear properties of ballistic nanoelectronic devices. Journal of Physics Condensed Matter, 2005, 17, R775-R802.	0.7	39
327	Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions. Applied Physics Letters, 2005, 86, 111105.	1.5	78
328	Compact logic NAND-gate based on a single in-plane quantum-wire transistor. IEEE Electron Device Letters, 2005, 26, 142-144.	2.2	11
329	Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 2004, 432, 197-200.	13.7	1,776
330	Room Temperature Operation of an In-Plane Half-Adder Based on Ballistic Y–Junctions. IEEE Electron Device Letters, 2004, 25, 462-464.	2.2	21
331	Drain voltage induced barrier increasing of quantum-wire transistors. Electronics Letters, 2004, 40, 75.	0.5	1
332	Single InGaAs quantum dot flash memory. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1343-1346.	0.8	1
333	A novel half-adder circuit based on nanometric ballistic Y-branched junctions. IEEE Electron Device Letters, 2003, 24, 625-627.	2.2	11
334	Self-switching of branched multiterminal junctions: a ballistic half-adder. Applied Physics Letters, 2003, 83, 2462-2464.	1.5	14
335	Pronounced switching bistability in a feedback coupled nanoelectronic Y-branch switch. Applied Physics Letters, 2003, 82, 1980-1982.	1.5	13
336	Capacitive-Coupling-Enhanced Switching Gain in an Electron Y-Branch Switch. Physical Review Letters, 2002, 89, 226804.	2.9	38
337	Large threshold hysteresis in a narrow AlGaAs/GaAs channel with embedded quantum dots. Applied Physics Letters, 2002, 81, 2115-2117.	1.5	25
338	Experimental and theoretical investigation of quantum point contacts for the validation of models for surface states. Nanotechnology, 2002, 13, 299-303.	1.3	5
339	Logic ANDâ^•NAND gates based on three-terminal ballistic junctions. Electronics Letters, 2002, 38, 951.	0.5	13
340	Coherent and ballistic switching effects in GaAs/AlGaAs nanojunctions. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 688-690.	1.3	4
341	Switching characteristics and demonstration of logic functions in modulation doped GaAs/AlGaAs nanoelectronic devices. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 954-956.	1.3	1
342	Microwave rectification in ballistic nanojunctions at room temperature. Microelectronic Engineering, 2002, 63, 217-221.	1.1	23

#	Article	IF	CITATIONS
343	1D-0D-1D Transitions in GaAs/AlGaAs Electron Waveguides Coupled by a Semiconducting Island. Physica Status Solidi (B): Basic Research, 2001, 224, 863-865.	0.7	Ο
344	Investigation of switching effects between the drains of an electron Y-branch switch. Applied Physics Letters, 2001, 78, 3325-3327.	1.5	37
345	Negative differential conductance in planar one-dimensional/zero-dimensional/one-dimensional GaAs/AlGaAs structures. Applied Physics Letters, 2000, 77, 3662-3664.	1.5	14
346	Self-Gating in Nanoelectronic Junctions. , 0, , .		1
347	Light-matter Interaction in Single Quantum Dot -Micropillar Cavity Systems. , 0, , 323-354.		1
348	Triggered singleâ€photon emission of a resonantly excited quantum dot grown on (111)B GaAs substrate. Physica Status Solidi - Rapid Research Letters, 0, , .	1.2	3