
## Hue Sun Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057006/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF    | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 1  | From Levinthal to pathways to funnels. Nature Structural and Molecular Biology, 1997, 4, 10-19.                                                                                                                                                  | 3.6   | 2,125     |
| 2  | Principles of protein folding — A perspective from simple exact models. Protein Science, 1995, 4,<br>561-602.                                                                                                                                    | 3.1   | 1,321     |
| 3  | Protein folding in the landscape perspective: Chevron plots and non-arrhenius kinetics. , 1998, 30, 2-33.                                                                                                                                        |       | 397       |
| 4  | Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific<br>protein on phase separation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, E8194-E8203. | 3.3   | 381       |
| 5  | Transition states and folding dynamics of proteins and heteropolymers. Journal of Chemical Physics, 1994, 100, 9238-9257.                                                                                                                        | 1.2   | 274       |
| 6  | Compact polymers. Macromolecules, 1989, 22, 4559-4573.                                                                                                                                                                                           | 2.2   | 233       |
| 7  | Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles. Physical Review<br>Letters, 2016, 117, 178101.                                                                                                                      | 2.9   | 224       |
| 8  | Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9650-9655.                                    | 3.3   | 207       |
| 9  | Biophysics of protein evolution and evolutionary protein biophysics. Journal of the Royal Society<br>Interface, 2014, 11, 20140419.                                                                                                              | 1.5   | 202       |
| 10 | The effects of internal constraints on the configurations of chain molecules. Journal of Chemical Physics, 1990, 92, 3118-3135.                                                                                                                  | 1.2   | 199       |
| 11 | Intrachain loops in polymers: Effects of excluded volume. Journal of Chemical Physics, 1989, 90, 492-509.                                                                                                                                        | 1.2   | 195       |
| 12 | Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly<br>Correlated. Biophysical Journal, 2017, 112, 2043-2046.                                                                                              | 0.2   | 192       |
| 13 | Cooperativity, Local-Nonlocal Coupling, and Nonnative Interactions: Principles of Protein Folding from Coarse-Grained Models. Annual Review of Physical Chemistry, 2011, 62, 301-326.                                                            | 4.8   | 187       |
| 14 | Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Biochemistry, 2018, 57, 2499-2508.                                                                                                                                  | 1.2   | 184       |
| 15 | â€~â€~Sequence space soup'' of proteins and copolymers. Journal of Chemical Physics, 1991, 95, 3775-3.                                                                                                                                           | 787.2 | 176       |
| 16 | Solvation Effects and Driving Forces for Protein Thermodynamic and Kinetic Cooperativity: How<br>Adequate is Native-centric Topological Modeling?. Journal of Molecular Biology, 2003, 326, 911-931.                                             | 2.0   | 167       |
| 17 | The why and how of DNA unlinking. Nucleic Acids Research, 2009, 37, 661-671.                                                                                                                                                                     | 6.5   | 164       |
| 18 | Cooperativity Principles in Protein Folding. Methods in Enzymology, 2004, 380, 350-379.                                                                                                                                                          | 0.4   | 160       |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparative roles of charge, <i>ï€</i> , and hydrophobic interactions in sequence-dependent phase<br>separation of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of<br>the United States of America, 2020, 117, 28795-28805. | 3.3 | 159       |
| 20 | Temperature dependence of hydrophobic interactions: A mean force perspective, effects of water density, and nonadditivity of thermodynamic signatures. Journal of Chemical Physics, 2000, 113, 4683-4700.                                                         | 1.2 | 156       |
| 21 | Polymer principles of protein calorimetric two-state cooperativity. Proteins: Structure, Function and Bioinformatics, 2000, 40, 637-661.                                                                                                                          | 1.5 | 151       |
| 22 | Modeling protein density of states: Additive hydrophobic effects are insufficient for calorimetric two-state cooperativity. Proteins: Structure, Function and Bioinformatics, 2000, 40, 543-571.                                                                  | 1.5 | 127       |
| 23 | Energy landscapes and the collapse dynamics of homopolymers. Journal of Chemical Physics, 1993, 99, 2116-2127.                                                                                                                                                    | 1.2 | 120       |
| 24 | Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9999-10004.                                       | 3.3 | 120       |
| 25 | Modeling the effects of mutations on the denatured states of proteins. Protein Science, 1992, 1, 201-215.                                                                                                                                                         | 3.1 | 119       |
| 26 | Folding kinetics of proteins and copolymers. Journal of Chemical Physics, 1992, 96, 768-780.                                                                                                                                                                      | 1.2 | 118       |
| 27 | Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. Journal of Molecular Liquids, 2017, 228, 176-193.                                                          | 2.3 | 103       |
| 28 | Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Physical Chemistry Chemical Physics, 2018, 20, 28558-28574.                                                                   | 1.3 | 98        |
| 29 | Charge pattern matching as a †fuzzy' mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New Journal of Physics, 2017, 19, 115003.                                                                           | 1.2 | 96        |
| 30 | Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid–Liquid Phase Separation in Protein<br>Condensates: Physical Chemistry and Biological Implications. Chemistry - A European Journal, 2019, 25,<br>13049-13069.                                    | 1.7 | 96        |
| 31 | Energetic Components of Cooperative Protein Folding. Physical Review Letters, 2000, 85, 4823-4826.                                                                                                                                                                | 2.9 | 91        |
| 32 | Competition between native topology and nonnative interactions in simple and complex folding<br>kinetics of natural and designed proteins. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 2920-2925.              | 3.3 | 91        |
| 33 | A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. Journal of Physical<br>Chemistry B, 2018, 122, 5418-5431.                                                                                                                             | 1.2 | 89        |
| 34 | Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is<br>the transition state picture to folding and unfolding? 1 1Edited by C. R. Matthews. Journal of<br>Molecular Biology, 2002, 315, 899-909.                   | 2.0 | 87        |
| 35 | Comparing folding codes for proteins and polymers. , 1996, 24, 335-344.                                                                                                                                                                                           |     | 86        |
| 36 | Recombinatoric exploration of novel folded structures: A heteropolymer-based model of protein evolutionary landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 809-814.                                        | 3.3 | 85        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea:<br>Inferences from nonpolar potentials of mean force. Proteins: Structure, Function and<br>Bioinformatics, 2002, 49, 560-566.                                       | 1.5  | 85        |
| 38 | Conformational propagation with prion-like characteristics in a simple model of protein folding.<br>Protein Science, 2001, 10, 819-835.                                                                                                                        | 3.1  | 84        |
| 39 | A simple model of chaperonin-mediated protein folding. Proteins: Structure, Function and<br>Bioinformatics, 1996, 24, 345-351.                                                                                                                                 | 1.5  | 81        |
| 40 | SOLVATION: HOW TO OBTAIN MICROSCOPIC ENERGIES FROM PARTITIONING AND SOLVATION EXPERIMENTS. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 425-459.                                                                                          | 18.3 | 81        |
| 41 | Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes<br>and comparison with implicit-solvent potential functions for proteins. Proteins: Structure, Function<br>and Bioinformatics, 2002, 48, 15-30.            | 1.5  | 81        |
| 42 | Hydrophobic association of Â-helices, steric dewetting, and enthalpic barriers to protein folding.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6206-6210.                                                   | 3.3  | 78        |
| 43 | Folding alphabets. , 1999, 6, 994-996.                                                                                                                                                                                                                         |      | 76        |
| 44 | Desolvation is a Likely Origin of Robust Enthalpic Barriers to Protein Folding. Journal of Molecular<br>Biology, 2005, 349, 872-889.                                                                                                                           | 2.0  | 75        |
| 45 | Contact order dependent protein folding rates: Kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences. Proteins: Structure, Function and Bioinformatics, 2003, 52, 524-533.              | 1.5  | 71        |
| 46 | Solvation: Effects of molecular size and shape. Journal of Chemical Physics, 1994, 101, 7007-7026.                                                                                                                                                             | 1.2  | 70        |
| 47 | Does Compactness Induce Secondary Structure in Proteins?. Journal of Molecular Biology, 1994, 241, 557-573.                                                                                                                                                    | 2.0  | 70        |
| 48 | Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Current Opinion in Structural Biology, 2015, 30, 32-42.                                                                                              | 2.6  | 70        |
| 49 | Criteria for downhill protein folding: Calorimetry, chevron plot, kinetic relaxation, and<br>single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins:<br>Structure, Function and Bioinformatics, 2006, 65, 373-391. | 1.5  | 66        |
| 50 | Matching speed and locality. Nature, 1998, 392, 761-763.                                                                                                                                                                                                       | 13.7 | 65        |
| 51 | Simple two-state protein folding kinetics requires near-levinthal thermodynamic cooperativity.<br>Proteins: Structure, Function and Bioinformatics, 2003, 52, 510-523.                                                                                         | 1.5  | 63        |
| 52 | Temperature Dependence of Three-Body Hydrophobic Interactions:Â Potential of Mean Force, Enthalpy,<br>Entropy, Heat Capacity, and Nonadditivity. Journal of the American Chemical Society, 2005, 127, 303-316.                                                 | 6.6  | 63        |
| 53 | A structural model of latent evolutionary potentials underlying neutral networks in proteins. HFSP<br>Journal, 2007, 1, 79-87.                                                                                                                                 | 2.5  | 61        |
| 54 | Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins.<br>Biophysical Journal, 2017, 113, 1012-1024.                                                                                                                   | 0.2  | 61        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109,<br>14888-14893.      | 3.3  | 59        |
| 56 | Pressure-Sensitive and Osmolyte-Modulated Liquid–Liquid Phase Separation of Eye-Lens γ-Crystallins.<br>Journal of the American Chemical Society, 2019, 141, 7347-7354.                                               | 6.6  | 59        |
| 57 | Configuration-Dependent Heat Capacity of Pairwise Hydrophobic Interactions. Journal of the American<br>Chemical Society, 2001, 123, 2083-2084.                                                                       | 6.6  | 57        |
| 58 | Polycation-ï€ Interactions Are a Driving Force for Molecular Recognition by an Intrinsically<br>Disordered Oncoprotein Family. PLoS Computational Biology, 2013, 9, e1003239.                                        | 1.5  | 57        |
| 59 | Topological Information Embodied in Local Juxtaposition Geometry Provides a Statistical Mechanical<br>Basis for Unknotting by Type-2 DNA Topoisomerases. Journal of Molecular Biology, 2006, 361, 268-285.           | 2.0  | 56        |
| 60 | Oil/Water Partitioning Has a Different Thermodynamic Signature When the Oil Solvent Chains Are<br>Aligned Than When They Are Amorphous. Journal of Physical Chemistry B, 1998, 102, 7272-7279.                       | 1.2  | 55        |
| 61 | Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics. Physical Review Letters, 2003, 90, 258104.                                                                                                   | 2.9  | 54        |
| 62 | Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions. Physical Biology, 2005, 2, S75-S85.                            | 0.8  | 52        |
| 63 | Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation<br>Properties of Protein Folding. Journal of Physical Chemistry B, 2014, 118, 7488-7509.                          | 1.2  | 49        |
| 64 | Desolvation Barrier Effects Are a Likely Contributor to the Remarkable Diversity in the Folding Rates of Small Proteins. Journal of Molecular Biology, 2009, 389, 619-636.                                           | 2.0  | 47        |
| 65 | Pressure and temperature dependence of hydrophobic hydration: Volumetric, compressibility, and thermodynamic signatures. Journal of Chemical Physics, 2007, 126, 114507.                                             | 1.2  | 46        |
| 66 | New ghost-free infrared-soft gauges. Physical Review D, 1986, 33, 540-547.                                                                                                                                           | 1.6  | 45        |
| 67 | A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes. Journal of Chemical Physics, 2020, 152, 045102.                                          | 1.2  | 45        |
| 68 | An Adequate Account of Excluded Volume Is Necessary To Infer Compactness and Asphericity of<br>Disordered Proteins by Förster Resonance Energy Transfer. Journal of Physical Chemistry B, 2015, 119,<br>15191-15202. | 1.2  | 44        |
| 69 | Kinetics of protein folding. Nature, 1995, 373, 664-665.                                                                                                                                                             | 13.7 | 43        |
| 70 | Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond. Journal of Chemical Physics, 2001, 115, 1414-1421.                                        | 1.2  | 42        |
| 71 | Kinetic consequences of native state optimization of surfaceâ€exposed electrostatic interactions in the Fyn SH3 domain. Proteins: Structure, Function and Bioinformatics, 2012, 80, 858-870.                         | 1.5  | 42        |
| 72 | Perspectives on protein evolution from simple exact models. Applied Bioinformatics, 2002, 1, 121-44.                                                                                                                 | 1.7  | 42        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model. Journal of Physics Condensed Matter, 2006, 18, S307-S328.                                                 | 0.7 | 41        |
| 74 | Enhanced structure in polymers at interfaces. Journal of Chemical Physics, 1991, 94, 8542-8557.                                                                                                                                            | 1.2 | 39        |
| 75 | Probing Possible Downhill Folding: Native Contact Topology Likely Places a Significant Constraint on the Folding Cooperativity of Proteins with â^1⁄440 Residues. Journal of Molecular Biology, 2008, 384, 512-530.                        | 2.0 | 38        |
| 76 | Transition paths, diffusive processes, and preequilibria of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20919-20924.                                                      | 3.3 | 38        |
| 77 | Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered<br>Proteins. Journal of Physical Chemistry B, 2020, 124, 6709-6720.                                                                     | 1.2 | 38        |
| 78 | Comparing Folding Codes in Simple Heteropolymer Models of Protein Evolutionary Landscape:<br>Robustness of the Superfunnel Paradigm. Biophysical Journal, 2005, 88, 118-131.                                                               | 0.2 | 36        |
| 79 | A critical assessment of the topomer search model of protein folding using a continuum<br>explicit-chain model with extensive conformational sampling. Protein Science, 2009, 14, 1643-1660.                                               | 3.1 | 36        |
| 80 | Pressureâ€Induced Dissolution and Reentrant Formation of Condensed, Liquid–Liquid Phaseâ€Separated<br>Elastomeric αâ€Elastin. Chemistry - A European Journal, 2018, 24, 8286-8291.                                                         | 1.7 | 36        |
| 81 | Inferring Global Topology from Local Juxtaposition Geometry: Interlinking Polymer Rings and Ramifications for Topoisomerase Action. Biophysical Journal, 2006, 90, 2344-2355.                                                              | 0.2 | 35        |
| 82 | Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins. PLoS Computational Biology, 2015, 11, e1004260.                                                                                    | 1.5 | 34        |
| 83 | A structural model of latent evolutionary potentials underlying neutral networks in proteins. , 2007, 1, 79-87.                                                                                                                            |     | 34        |
| 84 | An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Nature Communications, 2017, 8, 13943.                                                                                          | 5.8 | 33        |
| 85 | Sparsely populated folding intermediates of the Fyn SH3 domain: Matching native-centric essential dynamics and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14748-14753.        | 3.3 | 31        |
| 86 | Chevron Behavior and Isostable Enthalpic Barriers in Protein Folding: Successes and Limitations of<br>Simple Gŕlike Modeling. Biophysical Journal, 2005, 89, 520-535.                                                                      | 0.2 | 31        |
| 87 | Native Topology of the Designed Protein Top7 is Not Conducive to Cooperative Folding. Biophysical<br>Journal, 2009, 96, L25-L27.                                                                                                           | 0.2 | 31        |
| 88 | Effects of desolvation barriers and sidechains on local–nonlocal coupling and chevron behaviors in<br>coarse-grained models of protein folding. Physical Chemistry Chemical Physics, 2014, 16, 6460-6479.                                  | 1.3 | 31        |
| 89 | Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: Excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. Journal of Chemical Physics, 2008, 128, 145104. | 1.2 | 28        |
| 90 | Action at Hooked or Twisted–Hooked DNA Juxtapositions Rationalizes Unlinking Preference of Type-2<br>Topoisomerases. Journal of Molecular Biology, 2010, 400, 963-982.                                                                     | 2.0 | 27        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts.<br>PLoS Computational Biology, 2012, 8, e1002659.                                                 | 1.5 | 26        |
| 92  | A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding. Physical Chemistry Chemical Physics, 2017, 19, 13629-13639.                                   | 1.3 | 24        |
| 93  | A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. Journal of Physical Chemistry B, 2021, 125, 4337-4358.      | 1.2 | 24        |
| 94  | Subcompartmentalization of polyampholyte species in organelle-like condensates is promoted by charge-pattern mismatch and strong excluded-volume interaction. Physical Review E, 2021, 103, 042406.    | 0.8 | 24        |
| 95  | Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches. PLoS<br>Computational Biology, 2016, 12, e1004960.                                                         | 1.5 | 24        |
| 96  | Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding.<br>Biophysical Journal, 2022, 121, 157-171.                                                        | 0.2 | 24        |
| 97  | Explicit-chain model of native-state hydrogen exchange: Implications for event ordering and cooperativity in protein folding. Proteins: Structure, Function and Bioinformatics, 2004, 58, 31-44.       | 1.5 | 23        |
| 98  | Quantitative Analysis of the Effects of Photoswitchable Distance Constraints on the Structure of a<br>Globular Protein. Biochemistry, 2012, 51, 6421-6431.                                             | 1.2 | 23        |
| 99  | Conformations of a Metastable SH3 Domain Characterized by smFRET and an Excluded-Volume Polymer<br>Model. Biophysical Journal, 2016, 110, 1510-1522.                                                   | 0.2 | 23        |
| 100 | An exact lattice model of complex solutions: Chemical potentials depend on solute and solvent shape.<br>Journal of Chemical Physics, 1995, 103, 10675-10688.                                           | 1.2 | 21        |
| 101 | Exploring the effects of hydrogen bonding and hydrophobic interactions on the foldability and cooperativity of helical proteins using a simplified atomic model. Chemical Physics, 2004, 307, 187-199. | 0.9 | 21        |
| 102 | Continuum regularization of gauge theory with fermions. Zeitschrift Für Physik C-Particles and Fields, 1986, 33, 77-88.                                                                                | 1.5 | 20        |
| 103 | Energetics of protein thermodynamic cooperativity: contributions of local and nonlocal interactions. Polymer, 2004, 45, 623-632.                                                                       | 1.8 | 20        |
| 104 | Hydrophobic interactions in the formation of secondary structures in small peptides. Physical Review E, 2011, 84, 041931.                                                                              | 0.8 | 20        |
| 105 | Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. Journal of Physical Chemistry B, 2021, 125, 6451-6478.                        | 1.2 | 19        |
| 106 | Coordinateâ€space formulation of polymer lattice cluster theory. Journal of Chemical Physics, 1993, 98,<br>9951-9962.                                                                                  | 1.2 | 17        |
| 107 | Statistical mechanics of solvophobic aggregation: Additive and cooperative effects. Journal of Chemical Physics, 2001, 115, 3424-3431.                                                                 | 1.2 | 17        |
| 108 | Local site preference rationalizes disentangling by DNA topoisomerases. Physical Review E, 2010, 81,<br>031902.                                                                                        | 0.8 | 14        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Spatial ranges of driving forces are a key determinant of protein folding cooperativity and rate diversity. Physical Review E, 2013, 88, 044701.                                                                                          | 0.8 | 14        |
| 110 | Pressure Sensitivity of SynGAP/PSDâ€95 Condensates as a Model for Postsynaptic Densities and Its<br>Biophysical and Neurological Ramifications. Chemistry - A European Journal, 2020, 26, 11024-11031.                                    | 1.7 | 13        |
| 111 | Reply to "Comment on â€~Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond' ―[J. Chem. Phys. 116, 2665 (2002)]. Journal of Chemical Physics, 2002, 116, 2668-2669. | 1.2 | 11        |
| 112 | Volumetric Physics of Polypeptide Coil–Helix Transitions. Biochemistry, 2016, 55, 6269-6281.                                                                                                                                              | 1.2 | 11        |
| 113 | Continuum-regularized quantum gravity. Zeitschrift Für Physik C-Particles and Fields, 1987, 36, 669-693.                                                                                                                                  | 1.5 | 10        |
| 114 | Extracting Microscopic Energies from Oil-Phase Solvation Experiments. Journal of Physical Chemistry B, 2000, 104, 7471-7482.                                                                                                              | 1.2 | 10        |
| 115 | Selective adsorption of block copolymers on patterned surfaces. Journal of Chemical Physics, 2006, 125, 164909.                                                                                                                           | 1.2 | 10        |
| 116 | Evolvability and Single-Genotype Fluctuation in Phenotypic Properties: AÂSimple Heteropolymer Model.<br>Biophysical Journal, 2010, 98, 2487-2496.                                                                                         | 0.2 | 9         |
| 117 | Effects of Cosolvents and Crowding Agents on the Stability and Phase Transition Kinetics of the<br>SynGAP/PSD-95 Condensate Model of Postsynaptic Densities. Journal of Physical Chemistry B, 2022, 126,<br>1734-1741.                    | 1.2 | 9         |
| 118 | Interplaying roles of native topology and chain length in marginally cooperative and noncooperative folding of small protein fragments. International Journal of Quantum Chemistry, 2009, 109, 3482-3499.                                 | 1.0 | 8         |
| 119 | Non-Grassmann formulation of regularized gauge theory with fermions. Zeitschrift Für Physik<br>C-Particles and Fields, 1987, 34, 267-276.                                                                                                 | 1.5 | 7         |
| 120 | Consistent rationalization of type-2 topoisomerases' unknotting, decatenating, supercoil-relaxing actions and their scaling relation. Journal of Physics Condensed Matter, 2015, 27, 354103.                                              | 0.7 | 7         |
| 121 | Liaison amid disorder: non-native interactions may underpin long-range coupling in proteins. Journal of Biology, 2009, 8, 27.                                                                                                             | 2.7 | 5         |
| 122 | Molecular recognition and packing frustration in a helical protein. PLoS Computational Biology, 2017, 13, e1005909.                                                                                                                       | 1.5 | 5         |
| 123 | Short-Range Contact Preferences and Long-Range Indifference: Is Protein Folding Stoichiometry Driven?. Journal of Biomolecular Structure and Dynamics, 2011, 28, 603-605.                                                                 | 2.0 | 3         |
| 124 | A simple model of chaperoninâ€mediated protein folding. Proteins: Structure, Function and<br>Bioinformatics, 1996, 24, 345-351.                                                                                                           | 1.5 | 2         |
| 125 | Polymer principles of protein calorimetric two-state cooperativity. , 2000, 40, 637.                                                                                                                                                      |     | 2         |
|     |                                                                                                                                                                                                                                           |     |           |

Polymer principles of protein calorimetric two-state cooperativity. , 2000, 40, 637.

2

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Field theory description of ion association in re-entrant phase separation of polyampholytes. Journal of Chemical Physics, 2022, 156, .                                                                                           | 1.2 | 2         |
| 128 | Thermodynamics and kinetics of TopoII action: A consensus on T-segment curvature selection?<br>Comment on "Disentangling DNA Molecules―by Alexander Vologodskii. Physics of Life Reviews, 2016,<br>18, 135-138.                   | 1.5 | 1         |
| 129 | Theoretical Saxs Signatures of Conformational Heterogeneity and Homogeneity of Disordered<br>Protein Ensembles. Biophysical Journal, 2019, 116, 199a.                                                                             | 0.2 | 1         |
| 130 | SAXS Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles.<br>Biophysical Journal, 2020, 118, 503a.                                                                                         | 0.2 | 1         |
| 131 | Simplified Models of Protein Folding. , 2005, , 1823-1836.                                                                                                                                                                        |     | 1         |
| 132 | Frontispiece: Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid–Liquid Phase<br>Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry - A<br>European Journal, 2019, 25, . | 1.7 | 0         |
| 133 | Simplified Models of Protein Folding. , 2005, , 1823-1836.                                                                                                                                                                        |     | Ο         |