List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056910/publications.pdf Version: 2024-02-01

119 papers	7,143 citations	57631 44 h-index	64668 79 g-index
121	121	121	7139
all docs	docs citations	times ranked	citing authors

HONG OLAN

#	Article	IF	CITATIONS
1	V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 2019, 42, 1353-1359.	2.1	666
2	Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 2000, 407, 180-182.	13.7	607
3	An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 2016, 9, 233-239.	1.2	401
4	Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 2004, 8, 15-22.	3.0	297
5	A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters, 2007, 10, 737-744.	3.0	275
6	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
7	The role of exotic species in homogenizing the North American flora. Ecology Letters, 2006, 9, 1293-1298.	3.0	193
8	A Comparison of the Taxonomic Richness of Vascular Plants in China and the United States. American Naturalist, 1999, 154, 160-181.	1.0	153
9	V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 2022, 44, 335-339.	1.8	142
10	Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 2009, 18, 327-332.	2.7	141
11	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
12	REGIONAL DIFFERENCES IN RATES OF PLANT SPECIATION AND MOLECULAREVOLUTION: A COMPARISON BETWEEN EASTERN ASIA AND EASTERN NORTH AMERICA. Evolution; International Journal of Organic Evolution, 2004, 58, 2175-2184.	1.1	125
13	Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. Journal of Ecology, 2004, 92, 253-265.	1.9	122
14	Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography, 2012, 21, 341-351.	2.7	121
15	Global Patterns of Tree Species Richness in Moist Forests: Distinguishing Ecological Influences and Historical Contingency. Oikos, 1999, 86, 369.	1.2	117
16	Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecology Letters, 2008, 11, 547-553.	3.0	113
17	Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 2014, 7, 154-165.	1.2	106
18	The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography, 2009, 18, 111-122.	2.7	105

#	Article	IF	CITATIONS
19	Environmental determinants of amphibian and reptile species richness in China. Ecography, 2007, 30, 471-482.	2.1	91
20	A comparison of the taxonomic richness of temperate plants in East Asia and North America. American Journal of Botany, 2002, 89, 1818-1825.	0.8	90
21	The region effect on mesoscale plant species richness between eastern Asia and eastern North America. Ecography, 2004, 27, 129-136.	2.1	85
22	Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proceedings of the United States of America, 2019, 116, 23192-23201.	3.3	85
23	Latitudinal gradients in phylogenetic relatedness of angiosperm trees in <scp>N</scp> orth <scp>A</scp> merica. Global Ecology and Biogeography, 2013, 22, 1183-1191.	2.7	82
24	Drivers of β-diversity along latitudinal gradients revisited. Global Ecology and Biogeography, 2013, 22, 659-670.	2.7	79
25	Taxon Richness and Climate in Angiosperms: Is There a Globally Consistent Relationship That Precludes Region Effects?. American Naturalist, 2004, 163, 773-779.	1.0	78
26	Spatial Pattern of Vascular Plant Diversity in North America North of Mexico and its Floristic Relationship with Eurasia. Annals of Botany, 1999, 83, 271-283.	1.4	77
27	Spatial scale and crossâ€ŧaxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology, 2010, 91, 1172-1183.	1.5	77
28	Large-scale biogeographic patterns of vascular plant richness in North America: an analysis at the generic level. Journal of Biogeography, 1998, 25, 829-836.	1.4	74
29	Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?. Plant Diversity, 2021, 43, 255-263.	1.8	73
30	Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients. Journal of Biogeography, 2003, 30, 129-141.	1.4	65
31	Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecological Research, 2010, 25, 629-637.	0.7	65
32	Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11452-11457.	3.3	63
33	The Latitudinal Gradient of Speciesâ€Area Relationships for Vascular Plants of North America. American Naturalist, 2007, 170, 690-701.	1.0	61
34	A Comparison of Generic Endemism of Vascular Plants between East Asia and North America. International Journal of Plant Sciences, 2001, 162, 191-199.	0.6	60
35	Diversity of the understory vascular vegetation in 40 year-old and old-growth forest stands on Vancouver Island, British Columbia. Journal of Vegetation Science, 1997, 8, 773-780.	1.1	59
36	Phylogenetic beta diversity of angiosperms in <scp>N</scp> orth <scp>A</scp> merica. Global Ecology and Biogeography, 2013, 22, 1152-1161.	2.7	56

#	Article	IF	CITATIONS
37	Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. Ecography, 2015, 38, 241-250.	2.1	56
38	Out of the Tropical Lowlands: Latitude versus Elevation. Trends in Ecology and Evolution, 2016, 31, 738-741.	4.2	54
39	Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecology and Biogeography, 2017, 26, 1258-1269.	2.7	54
40	Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks. Journal of Systematics and Evolution, 2009, 47, 509-514.	1.6	53
41	Linking biotic homogenization to habitat type, invasiveness and growth form of naturalized alien plants in North America. Diversity and Distributions, 2010, 16, 119-125.	1.9	52
42	Longitudinal patterns of plant diversity in the North American boreal forest. Plant Ecology, 1998, 138, 161-178.	0.7	48
43	Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for largeâ€scale angiosperm assemblages in China. Ecography, 2020, 43, 1706-1716.	2.1	48
44	Floristic Relationships between Eastern Asia and North America: Test of Gray's Hypothesis. American Naturalist, 2002, 160, 317-332.	1.0	47
45	Relationships between Plant and Animal Species Richness at a Regional Scale in China. Conservation Biology, 2007, 21, 937-944.	2.4	45
46	Understorey vegetation in boreal <i>Picea mariana</i> and <i>Populus tremuloides</i> stands in British Columbia. Journal of Vegetation Science, 2003, 14, 173-184.	1.1	43
47	Distributions of exotic plants in eastern Asia and North America. Ecology Letters, 2006, 9, 827-834.	3.0	43
48	Environmental Determinants of Woody Plant Diversity at a Regional Scale in China. PLoS ONE, 2013, 8, e75832.	1.1	43
49	Patterns of phylogenetic relatedness of angiosperm woody plants across biomes and lifeâ€history stages. Journal of Biogeography, 2017, 44, 1383-1392.	1.4	42
50	EFFECTS OF REGIONAL VS. ECOLOGICAL FACTORS ON PLANT SPECIES RICHNESS: AN INTERCONTINENTAL ANALYSIS. Ecology, 2007, 88, 1440-1453.	1.5	40
51	Growth form and distribution of introduced plants in their native and nonâ€native ranges in Eastern Asia and North America. Diversity and Distributions, 2008, 14, 381-386.	1.9	39
52	BIODIVERSITY RESEARCH: Nativeâ€exotic species richness relationships across spatial scales and biotic homogenization in wetland plant communities of Illinois, USA. Diversity and Distributions, 2010, 16, 737-743.	1.9	39
53	Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees inAforest communities in China. Journal of Biogeography, 2016, 43, 603-615.	1.4	39
54	Plant species richness across the Himalaya driven by evolutionary history and current climate. Ecosphere, 2019, 10, e02945.	1.0	39

#	Article	IF	CITATIONS
55	Floristic analysis of vascular plant genera of North America north of Mexico: characteristics of phytogeography. Journal of Biogeography, 1999, 26, 1307-1321.	1.4	38
56	Using an updated time alibrated familyâ€level phylogeny of seed plants to test for nonâ€random patterns of life forms across the phylogeny. Journal of Systematics and Evolution, 2014, 52, 423-430.	1.6	36
57	Effects of introduced species on floristic similarity: Comparing two US states. Basic and Applied Ecology, 2008, 9, 617-625.	1.2	34
58	Contrasting relationships between clade age and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. Journal of Vegetation Science, 2014, 25, 1208-1215.	1.1	32
59	Latitudinal shifts of introduced species: possible causes and implications. Biological Invasions, 2012, 14, 547-556.	1.2	30
60	Incomplete species lists derived from global and regional specimenâ€record databases affect macroecological analyses: A case study on the vascular plants of China. Journal of Biogeography, 2018, 45, 2718-2729.	1.4	29
61	Effects of historical and contemporary factors on global patterns in avian species richness. Journal of Biogeography, 2008, 35, 1362-1373.	1.4	28
62	Phylogenetic relatedness of native and exotic plants along climate gradients in California, <scp>USA</scp> . Diversity and Distributions, 2017, 23, 1323-1333.	1.9	26
63	Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180949.	1.2	25
64	Floristic analysis of vascular plant genera of North America north of Mexico: spatial patterning of phytogeography. Journal of Biogeography, 2001, 28, 525-534.	1.4	23
65	Phytogeographical Analysis of Seed Plant Genera in China. Annals of Botany, 2006, 98, 1073-1084.	1.4	23
66	Effects of woody plant species richness on mammal species richness in southern Africa. Journal of Biogeography, 2009, 36, 1685-1697.	1.4	23
67	Evolutionary assembly of flowering plants into sky islands. Nature Ecology and Evolution, 2021, 5, 640-646.	3.4	23
68	Comment on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients― Science, 2012, 335, 1573-1573.	6.0	21
69	Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America. Journal of Plant Ecology, 2018, 11, 394-400.	1.2	21
70	Phylogenetic structure of angiosperm trees in local forest communities along latitudinal and elevational gradients in eastern North America. Ecography, 2020, 43, 419-430.	2.1	21
71	Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, China, and Indian Peaks, USA. Journal of Vegetation Science, 1999, 10, 869-882.	1.1	20
72	Phylogenetic community ecology: integrating community ecology and evolutionary biology. Journal of Plant Ecology, 2014, 7, 97-100.	1.2	20

#	Article	IF	CITATIONS
73	Patterns of phylogenetic beta diversity measured at deep evolutionary histories across geographical and ecological spaces for angiosperms in China. Journal of Biogeography, 2021, 48, 773-784.	1.4	19
74	Patterns and drivers of phylogenetic structure of pteridophytes in China. Global Ecology and Biogeography, 2021, 30, 1835-1846.	2.7	19
75	Global patterns of the beta diversity–energy relationship in terrestrial vertebrates. Acta Oecologica, 2012, 39, 67-71.	0.5	18
76	Geographic patterns and environmental correlates of phylogenetic relatedness and diversity for freshwater fish assemblages in North America. Ecography, 2020, 43, 1814-1824.	2.1	18
77	Darwin's preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Global Ecology and Biogeography, 2022, 31, 531-545.	2.7	17
78	Are phylogenies derived from familyâ€level supertrees robust for studies on macroecological patterns along environmental gradients?. Journal of Systematics and Evolution, 2016, 54, 29-36.	1.6	16
79	Taxonomic and phylogenetic βâ€diversity of freshwater fish assemblages in relationship to geographical and climatic determinants in North America. Global Ecology and Biogeography, 2021, 30, 1965-1977.	2.7	16
80	Global patterns of fern species diversity: An evaluation of fern data in GBIF. Plant Diversity, 2022, 44, 135-140.	1.8	16
81	Disentangling the relative effects of ambient energy, water availability, and energy–water balance on pteridophyte species richness at a landscape scale in China. Plant Ecology, 2012, 213, 749-756.	0.7	15
82	Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests. Scientific Reports, 2016, 6, 35926.	1.6	15
83	PLANT SPECIES INVASIONS ALONG THE LATITUDINAL GRADIENT IN THE UNITED STATES: COMMENT. Ecology, 2006, 87, 3209-3213.	1.5	14
84	A latitudinal gradient of beta diversity for exotic vascular plant species in North America. Diversity and Distributions, 2008, 14, 556-560.	1.9	14
85	Latitude, tree species diversity and the metabolic theory of ecology. Global Ecology and Biogeography, 2011, 20, 362-365.	2.7	14
86	Reinvestigation on species richness and environmental correlates of bryophytes at a regional scale in China. Journal of Plant Ecology, 2016, 9, 734-741.	1.2	14
87	Global tests of regional effect on species richness of vascular plants and terrestrial vertebrates. Ecography, 2009, 32, 553-560.	2.1	13
88	Species turnover of amphibians and reptiles in eastern China: disentangling the relative effects of geographic distance and environmental difference. Ecological Research, 2011, 26, 949-956.	0.7	13
89	Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest. PLoS ONE, 2015, 10, e0131162.	1.1	13
90	Niche overlap and divergence times support niche conservatism in eastern Asia–eastern North America disjunct plants. Global Ecology and Biogeography, 2021, 30, 1990-2003.	2.7	13

#	Article	IF	CITATIONS
91	Mean family age of angiosperm tree communities and its climatic correlates along elevational and latitudinal gradients in eastern North America. Journal of Biogeography, 2018, 45, 259-268.	1.4	12
92	Geophysical, evolutionary and ecological processes interact to drive phylogenetic dispersion in angiosperm assemblages along the longest elevational gradient in the world. Botanical Journal of the Linnean Society, 2019, 190, 333-344.	0.8	12
93	Global and regional tree species diversity. Journal of Plant Ecology, 2019, 12, 210-215.	1.2	12
94	Relationship of minimum winter temperature and temperature seasonality to the northern range limit and species richness of trees in North America. Journal of Chinese Geography, 2022, 32, 280-290.	1.5	12
95	Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Global Ecology and Biogeography, 2022, 31, 1864-1876.	2.7	12
96	Effects of geographic distance and climatic dissimilarity on species turnover in alpine meadow communities across a broad spatial extent on the Tibetan Plateau. Plant Ecology, 2012, 213, 1357-1364.	0.7	10
97	A synthesis of botanical informatics for vascular plants in Africa. Ecological Informatics, 2021, 64, 101382.	2.3	9
98	Elevational patterns of phylogenetic structure of angiosperms in a biodiversity hotspot in eastern Himalaya. Diversity and Distributions, 2022, 28, 2534-2548.	1.9	9
99	Are invasive species a phylogenetically clustered subset of naturalized species in regional floras? A case study for flowering plants in China. Diversity and Distributions, 2022, 28, 2084-2093.	1.9	9
100	Bimodality of plant height: fact or artifact? A response to Scheffer et al Trends in Ecology and Evolution, 2015, 30, 6-7.	4.2	8
101	Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Scientific Reports, 2017, 7, 5634.	1.6	8
102	Regional disparity in extinction risk: Comparison of disjunct plant genera between eastern Asia and eastern North America. Global Change Biology, 2021, 27, 1904-1914.	4.2	8
103	Pteridophyte species richness in the central Himalaya is limited by cold climate extremes at high elevations and rainfall seasonality at low elevations. Ecology and Evolution, 2022, 12, .	0.8	7
104	Linking evolutionary dynamics to species extinction for flowering plants in global biodiversity hotspots. Diversity and Distributions, 2022, 28, 2871-2885.	1.9	7
105	Global relationships between beta diversity and latitude after accounting for regional diversity. Ecological Informatics, 2015, 25, 10-13.	2.3	6
106	Ecological determinants of mean family age of angiosperm trees in forest communities in China. Scientific Reports, 2016, 6, 28662.	1.6	6
107	Does daily climate variation have an effect on species' elevational range size?. Journal of Biogeography, 2017, 44, 2432-2436.	1.4	6
108	Geographic patterns and climate correlates of the deviation between phylogenetic and taxonomic diversity for angiosperms in China. Biological Conservation, 2021, 262, 109291.	1.9	6

#	Article	IF	CITATIONS
109	Sizeâ€dependent and environmentâ€mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecology and Evolution, 2022, 12, e8516.	0.8	6
110	Patterns of frequency distribution of woody plant heights: a response to Scheffer et al Trends in Ecology and Evolution, 2015, 30, 497-498.	4.2	5
111	Biases in assessing the evolutionary history of the angiosperm flora of China. Journal of Biogeography, 2019, 46, 1096-1099.	1.4	5
112	Evolutionary assembly of the Arctic flora. Global Ecology and Biogeography, 2022, 31, 396-404.	2.7	5
113	Effects of climate and topography on the diversity anomaly of plants disjunctly distributed in eastern Asia and eastern North America. Global Ecology and Biogeography, 2021, 30, 2029-2042.	2.7	4
114	Influence of phylogenetic scale on the relationships of taxonomic and phylogenetic turnovers with environment for angiosperms in China. Ecology and Evolution, 2022, 12, e8544.	0.8	4
115	No empirical evidence to support the hypothesis that daily climate variation has an effect on species' elevational range size: Reply to Chan etÂal Journal of Biogeography, 2018, 45, 2827-2832.	1.4	2
116	Hemispheric- and Continental-Scale Patterns of Similarity in Mountain Tundra. Annals of the American Association of Geographers, 2020, 110, 1005-1021.	1.5	2
117	Are species lists derived from modeled species range maps appropriate for macroecological studies? A case study on data from BIEN. Basic and Applied Ecology, 2020, 48, 146-156.	1.2	2
118	Geographic patterns and climatic correlates of deep evolutionary legacies for angiosperm assemblages in China. Journal of Systematics and Evolution, 2023, 61, 563-571.	1.6	1
119	Relationship between clade age and temperature for angiosperm tree species in forest communities along an elevational gradient in tropical Asia. Journal of Plant Ecology, 2016, , rtw074.	1.2	0