Kai Fukami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056904/publications.pdf Version: 2024-02-01

Κλι Ειικλιμι

#	Article	lF	CITATIONS
1	Generalization techniques of neural networks for fluid flow estimation. Neural Computing and Applications, 2022, 34, 3647-3669.	3.2	36
2	Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions. Scientific Reports, 2022, 12, 3726.	1.6	13
3	Machine-learning-based reconstruction of transient vortex-airfoil wake interaction. , 2022, , .		1
4	Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows. Journal of Fluid Mechanics, 2021, 909, .	1.4	126
5	Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow. Physics of Fluids, 2021, 33, .	1.6	104
6	Experimental velocity data estimation for imperfect particle images using machine learning. Physics of Fluids, 2021, 33, .	1.6	50
7	Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low dimensionalization. Theoretical and Computational Fluid Dynamics, 2021, 35, 633-658.	0.9	48
8	Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows. SN Computer Science, 2021, 2, 1.	2.3	33
9	Sparse identification of nonlinear dynamics with low-dimensionalized flow representations. Journal of Fluid Mechanics, 2021, 926, .	1.4	42
10	Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. Nature Machine Intelligence, 2021, 3, 945-951.	8.3	79
11	Nonlinear mode decomposition with convolutional neural networks for fluidÂdynamics. Journal of Fluid Mechanics, 2020, 882, .	1.4	178
12	Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data. Physics of Fluids, 2020, 32, .	1.6	110
13	Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theoretical and Computational Fluid Dynamics, 2020, 34, 367-383.	0.9	102
14	Assessment of supervised machine learning methods for fluid flows. Theoretical and Computational Fluid Dynamics, 2020, 34, 497-519.	0.9	115
15	CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. Fluid Dynamics Research, 2020, 52, 065501.	0.6	75
16	Probabilistic neural networks for fluid flow surrogate modeling and data recovery. Physical Review Fluids, 2020, 5, .	1.0	68
17	Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 2019, 870, 106-120.	1.4	356
18	Synthetic turbulent inflow generator using machine learning. Physical Review Fluids, 2019, 4, .	1.0	97

#	Article	IF	CITATIONS
19	Data-Driven Reduced Order Modeling of Flows Around Two-Dimensional Bluff Bodies of Various Shapes. , 2019, , .		4
20	Machine-learned super-resolution analysis of three-dimensional turbulent channel flow. The Proceedings of the Fluids Engineering Conference, 2019, 2019, OS8-01.	0.0	4
21	CNN-SINDy Based Reduced Order Modeling of Unsteady Flow Fields. , 2019, , .		0