
Syed Hassan Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT. IEEE Internet of Things Journal, 2020, 7, 4260-4277.	5.5	197
2	Efficient Fire Detection for Uncertain Surveillance Environment. IEEE Transactions on Industrial Informatics, 2019, 15, 3113-3122.	7.2	184
3	A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks. Sensors, 2015, 15, 28603-28626.	2.1	175
4	Fog/Edge Computing-Based IoT (FECIoT): Architecture, Applications, and Research Issues. IEEE Internet of Things Journal, 2019, 6, 4118-4149.	5.5	175
5	Orchestration of Microservices for IoT Using Docker and Edge Computing. IEEE Communications Magazine, 2018, 56, 118-123.	4.9	172
6	CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 3954-3963.	3.9	156
7	The Internet of Things: A Review of Enabled Technologies and Future Challenges. IEEE Access, 2019, 7, 7606-7640.	2.6	152
8	Named Data Networking for Software Defined Vehicular Networks. IEEE Communications Magazine, 2017, 55, 60-66.	4.9	146
9	Energy Efficient Direction-Based PDORP Routing Protocol for WSN. IEEE Access, 2016, 4, 3182-3194.	2.6	107
10	RUFS: RobUst Forwarder Selection in Vehicular Content-Centric Networks. IEEE Communications Letters, 2015, 19, 1616-1619.	2.5	103
11	NBC-MAIDS: NaÃ ⁻ ve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks. Journal of Supercomputing, 2018, 74, 5156-5170.	2.4	103
12	KEIDS: Kubernetes-Based Energy and Interference Driven Scheduler for Industrial IoT in Edge-Cloud Ecosystem. IEEE Internet of Things Journal, 2020, 7, 4228-4237.	5.5	96
13	SDN-Based Secure and Privacy-Preserving Scheme for Vehicular Networks: A 5G Perspective. IEEE Transactions on Vehicular Technology, 2019, 68, 8421-8434.	3.9	93
14	Federated Learning in the Sky: Aerial-Ground Air Quality Sensing Framework With UAV Swarms. IEEE Internet of Things Journal, 2021, 8, 9827-9837.	5.5	93
15	Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 2017, 92, 42-50.	5.8	90
16	Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications. Wireless Networks, 2020, 26, 2307-2316.	2.0	90
17	Named-Data-Networking-Based ITS for Smart Cities. , 2017, 55, 105-111.		89
18	Enabling Technologies on Cloud of Things for Smart Healthcare. IEEE Access, 2018, 6, 31950-31967.	2.6	87

Syed Hassan Ahmed

#	Article	IF	CITATIONS
19	Bringing Deep Learning at the Edge of Information-Centric Internet of Things. IEEE Communications Letters, 2019, 23, 52-55.	2.5	83
20	BEST-MAC: Bitmap-Assisted Efficient and Scalable TDMA-Based WSN MAC Protocol for Smart Cities. IEEE Access, 2016, 4, 312-322.	2.6	75
21	Enabling Push-Based Critical Data Forwarding in Vehicular Named Data Networks. IEEE Communications Letters, 2017, 21, 873-876.	2.5	69
22	MobQoS: Mobility-Aware and QoS-Driven SDN Framework for Autonomous Vehicles. IEEE Wireless Communications, 2019, 26, 12-20.	6.6	66
23	Blockchain-Based Lightweight Authentication Mechanism for Vehicular Fog Infrastructure. , 2019, , .		63
24	Cyber Physical System: Architecture, applications and research challenges. , 2013, , .		61
25	IoMT: A Reliable Cross Layer Protocol for Internet of Multimedia Things. IEEE Internet of Things Journal, 2017, 4, 832-839.	5.5	60
26	Towards Optimization of Metaheuristic Algorithms for IoT Enabled Smart Homes Targeting Balanced Demand and Supply of Energy. IEEE Access, 2019, 7, 24267-24281.	2.6	60
27	Can Sensors Collect Big Data? An Energy-Efficient Big Data Gathering Algorithm for a WSN. IEEE Transactions on Industrial Informatics, 2017, 13, 1961-1968.	7.2	59
28	Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 2125-2141.	4.7	59
29	Imminent Communication Technologies for Smart Communities: Part 2. IEEE Communications Magazine, 2018, 56, 80-81.	4.9	59
30	TACASHI: Trust-Aware Communication Architecture for Social Internet of Vehicles. IEEE Internet of Things Journal, 2019, 6, 5870-5877.	5.5	59
31	Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Frontiers of Physics, 2018, 13, 1.	2.4	56
32	Traffic signal control for smart cities using reinforcement learning. Computer Communications, 2020, 154, 324-330.	3.1	56
33	Dominant Data Set Selection Algorithms for Electricity Consumption Time-Series Data Analysis Based on Affine Transformation. IEEE Internet of Things Journal, 2020, 7, 4347-4360.	5.5	53
34	Information-Centric Networking With Edge Computing for IoT: Research Challenges and Future Directions. IEEE Access, 2018, 6, 73465-73488.	2.6	51
35	A cross layer protocol for traffic management in Social Internet of Vehicles. Future Generation Computer Systems, 2018, 82, 707-714.	4.9	50
36	An energy-efficient data collection protocol with AUV path planning in the Internet of Underwater Things. Journal of Network and Computer Applications, 2019, 135, 20-31.	5.8	50

#	Article	IF	CITATIONS
37	Hierarchical and Flat-Based Hybrid Naming Scheme in Content-Centric Networks of Things. IEEE Internet of Things Journal, 2018, 5, 1070-1080.	5.5	49
38	Quality of Service Provisioning for Heterogeneous Services in Cognitive Radio-Enabled Internet of Things. IEEE Transactions on Network Science and Engineering, 2020, 7, 328-342.	4.1	47
39	Hierarchical and hash based naming with Compact Trie name management scheme for Vehicular Content Centric Networks. Computer Communications, 2015, 71, 73-83.	3.1	46
40	Named data networking-based smart home. ICT Express, 2016, 2, 130-134.	3.3	45
41	An Efficient Power Scheduling in Smart Homes Using Jaya Based Optimization with Time-of-Use and Critical Peak Pricing Schemes. Energies, 2018, 11, 3155.	1.6	45
42	Reputation-Based Blockchain for Secure NDN Caching in Vehicular Networks. , 2018, , .		44
43	A Trusted Lightweight Communication Strategy for Flying Named Data Networking. Sensors, 2018, 18, 2683.	2.1	44
44	A Big Data Analytics Architecture for the Internet of Small Things. IEEE Communications Magazine, 2018, 56, 128-133.	4.9	43
45	Vehicular content centric network (VCCN). , 2015, , .		42
46	Enhanced TDMA based MAC protocol for adaptive data control in wireless sensor networks. Journal of Communications and Networks, 2015, 17, 247-255.	1.8	42
47	Speeding Up the Internet of Things: LEAIoT: A Lightweight Encryption Algorithm Toward Low-Latency Communication for the Internet of Things. IEEE Consumer Electronics Magazine, 2018, 7, 31-37.	2.3	41
48	Real-Time Fault Detection for IIoT Facilities Using GBRBM-Based DNN. IEEE Internet of Things Journal, 2020, 7, 5713-5722.	5.5	41
49	Gateway discovery algorithm based on multiple QoS path parameters between mobile node and gateway node. Journal of Communications and Networks, 2012, 14, 434-442.	1.8	40
50	DPEL: Dynamic PIT Entry Lifetime in Vehicular Named Data Networks. IEEE Communications Letters, 2016, 20, 336-339.	2.5	40
51	Multimodality Sentiment Analysis in Social Internet of Things Based on Hierarchical Attentions and CSAT-TCN With MBM Network. IEEE Internet of Things Journal, 2021, 8, 12748-12757.	5.5	40
52	Multimedia streaming in information-centric networking: A survey and future perspectives. Computer Networks, 2017, 125, 103-121.	3.2	39
53	Smart city designing and planning based on big data analytics. Sustainable Cities and Society, 2017, 35, 271-279.	5.1	39
54	HealthyBroker: A Trustworthy Blockchain-Based Multi-Cloud Broker for Patient-Centered eHealth Services. Electronics (Switzerland), 2019, 8, 602.	1.8	39

#	Article	IF	CITATIONS
55	Disaster Management System Aided by Named Data Network of Things: Architecture, Design, and Analysis. Sensors, 2018, 18, 2431.	2.1	37
56	AUV-Aided Energy-Efficient Clustering in the Internet of Underwater Things. IEEE Transactions on Green Communications and Networking, 2019, 3, 1132-1141.	3.5	37
57	ICN-Based Enhanced Cooperative Caching for Multimedia Streaming in Resource Constrained Vehicular Environment. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4588-4600.	4.7	37
58	Void Hole Avoidance for Reliable Data Delivery in IoT Enabled Underwater Wireless Sensor Networks. Sensors, 2018, 18, 3271.	2.1	36
59	Demand-Response Management Using a Fleet of Electric Vehicles: An Opportunistic-SDN-Based Edge-Cloud Framework for Smart Grids. IEEE Network, 2019, 33, 46-53.	4.9	36
60	Smart Health: A Novel Paradigm to Control the Chickungunya Virus. IEEE Internet of Things Journal, 2019, 6, 1306-1311.	5.5	35
61	A blockchain-based architecture for secure vehicular Named Data Networks. Computers and Electrical Engineering, 2020, 86, 106715.	3.0	34
62	CONET: Controlled data packets propagation in vehicular Named Data Networks. , 2016, , .		33
63	A Methodology of Real-Time Data Fusion for Localized Big Data Analytics. IEEE Access, 2018, 6, 24510-24520.	2.6	33
64	A Deep Learning Framework Using Passive WiFi Sensing for Respiration Monitoring. , 2017, , .		32
65	DIFS: Distributed Interest Forwarder Selection in Vehicular Named Data Networks. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3076-3080.	4.7	32
66	A hybrid approach, Smart Street use case and future aspects for Internet of Things in smart cities. Future Generation Computer Systems, 2018, 79, 941-951.	4.9	31
67	A lightweight trust management algorithm based on subjective logic for interconnected cloud computing environments. Journal of Supercomputing, 2019, 75, 3534-3554.	2.4	31
68	MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the Internet of Things Applications. IEEE Access, 2018, 6, 56737-56749.	2.6	29
69	Improving Bivious Relay Selection in Vehicular Delay Tolerant Networks. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 987-995.	4.7	27
70	Guest Editorial: Special Section on Integration of Big Data and Artificial Intelligence for Internet of Things. IEEE Transactions on Industrial Informatics, 2020, 16, 2562-2565.	7.2	27
71	A Novel Whale Optimization Algorithm for Cryptanalysis in Merkle-Hellman Cryptosystem. Mobile Networks and Applications, 2018, 23, 723-733.	2.2	26
72	Vehicular Delay Tolerant Network (VDTN): Routing perspectives. , 2015, , .		25

#	Article	IF	CITATIONS
73	Fuzzy based multi-criteria vertical handover decision modeling in heterogeneous wireless networks. Multimedia Tools and Applications, 2017, 76, 24649-24674.	2.6	25
74	Routing Protocols for Vehicular Delay Tolerant Networks: A Survey. International Journal of Distributed Sensor Networks, 2015, 11, 325027.	1.3	24
75	Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain Localization Cooperation Gain. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5374-5388.	4.7	24
76	Dynamic measurement errors prediction for sensors based on firefly algorithm optimize support vector machine. Sustainable Cities and Society, 2017, 35, 250-256.	5.1	23
77	Towards Information-Centric Networking (ICN) Naming for Internet of Things (IoT). , 2017, , .		23
78	Fair energy management with void hole avoidance in intelligent heterogeneous underwater WSNs. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 4225-4241.	3.3	23
79	LAPEL: Hop Limit Based Adaptive PIT Entry Lifetime for Vehicular Named Data Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 5546-5557.	3.9	22
80	Delay Tolerance in Underwater Wireless Communications: <i> A Routing Perspective</i> . Mobile Information Systems, 2016, 2016, 1-9.	0.4	21
81	EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme for Underwater Acoustic Sensor Networks. Sensors, 2017, 17, 2212.	2.1	21
82	Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. , 2018, , .		20
83	Data Freshness Based AUV Path Planning for UWSN in the Internet of Underwater Things. , 2019, , .		20
84	A novel PSO algorithm for dynamic wireless sensor network multiobjective optimization problem. Transactions on Emerging Telecommunications Technologies, 2019, 30, e3523.	2.6	20
85	Green Computing in Software Defined Social Internet of Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3644-3653.	4.7	20
86	Hybrid Adaptive Beaconing in Vehicular Ad Hoc Networks: A Survey. International Journal of Distributed Sensor Networks, 2015, 11, 390360.	1.3	20
87	An Optimized Approach of Dynamic Target Nodes in Wireless Sensor Network Using Bio Inspired Algorithms for Maritime Rescue. IEEE Transactions on Intelligent Transportation Systems, 2022, , 1-8.	4.7	20
88	SmartCop: Enabling Smart Traffic Violations Ticketing in Vehicular Named Data Networks. Mobile Information Systems, 2016, 2016, 1-12.	0.4	19
89	Named Data Networking's Intrinsic Cyber-Resilience for Vehicular CPS. IEEE Access, 2018, 6, 60570-60585.	2.6	19

18

#	Article	IF	CITATIONS
91	Distributed Gateway Selection for M2M Communication in Cognitive 5G Networks. IEEE Network, 2017, 31, 94-100.	4.9	18
92	Hierarchical architecture for 5G based software-defined intelligent transportation system. , 2018, , .		18
93	Multi-hop Routing in Wireless Sensor Networks. Springer Briefs in Electrical and Computer Engineering, 2016, , .	0.3	16
94	iDFR: Intelligent directional flooding-based routing protocols for underwater sensor networks. , 2017, , .		16
95	Interest Broadcast Suppression Scheme for Named Data Wireless Sensor Networks. IEEE Access, 2019, 7, 51799-51809.	2.6	16
96	An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks. , 2019, , .		16
97	A Secure, Lightweight, and Privacy-Preserving Authentication Scheme for V2G Connections in Smart Grid. , 2019, , .		15
98	En-OsCo. , 2019, , .		15
99	EENC - energy efficient nested clustering in UASN. , 2014, , .		14
100	Target RSU Selection with Low Scanning Latency in WiMAX-enabled Vehicular Networks. Mobile Networks and Applications, 2015, 20, 239-250.	2.2	14
101	Towards content-centric traffic ticketing in VANETs: An application perspective. , 2015, , .		13
102	An online marking system conducive toÂlearning. Journal of Intelligent and Fuzzy Systems, 2016, 31, 2463-2471.	0.8	13
103	An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility. Sensors, 2017, 17, 2251.	2.1	13
104	AUV-Assisted Energy-Efficient Clustering in Underwater Wireless Sensor Networks. , 2018, , .		13
105	Proof of Sharing in Inter-Operator Spectrum Sharing Markets. , 2018, , .		13
106	Outage Minimization Using Bivious Relaying Scheme in Vehicular Delay Tolerant Networks. Wireless Personal Communications, 2015, 84, 2679-2692.	1.8	12
107	Asking neighbors a favor: Cooperative video retrieval using cellular networks in VANETs. Vehicular Communications, 2018, 12, 39-49.	2.7	12
108	Depth based routing protocol using smart clustered sensor nodes in underwater WSN. , 2018, , .		12

Syed Hassan Ahmed

#	Article	IF	CITATIONS
109	Bi-directional channel modeling for implantable UHF–RFID transceivers in brain–computer interface applications. Future Generation Computer Systems, 2018, 88, 683-692.	4.9	12
110	RF propagation analysis of MICAz Mote's antenna with ground effect. , 2012, , .		11
111	OEFS: On-Demand Energy-Based Forwarding Strategy for Named Data Wireless Ad Hoc Networks. IEEE Access, 2017, 5, 6075-6086.	2.6	11
112	SDN-based load balancing for multi-path TCP. , 2018, , .		11
113	Vehicular Sensor Networks: Applications, Advances and Challenges. Sensors, 2020, 20, 3686.	2.1	11
114	A cacheâ€based approach toward improved scheduling in fog computing. Software - Practice and Experience, 2021, 51, 2360-2372.	2.5	11
115	Effect of Fast Moving Object on RSSI in WSN: An Experimental Approach. Communications in Computer and Information Science, 2012, , 43-51.	0.4	11
116	NDN goes deep. , 2017, , .		11
117	Guest Editorial: Special Section on Advanced Deep Learning Algorithms for Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2021, 17, 2764-2766.	7.2	10
118	Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks. , 2012, , .		9
119	Distributed SCH selection for concurrent transmissions in IEEE 1609.4 multi-channel VANETs. , 2017, , .		9
120	Towards energy efficient duty cycling in underwater wireless sensor networks. Multimedia Tools and Applications, 2019, 78, 30057-30079.	2.6	9
121	OMRI–MAC: Optimized Multi-transmission Receiver-Initiated MAC in Underwater Wireless Sensor Networks. Wireless Personal Communications, 2019, 107, 1491-1505.	1.8	9
122	Caching Policies in NDN-IoT Architecture. EAI/Springer Innovations in Communication and Computing, 2020, , 43-64.	0.9	9
123	Receiver-initiated dynamic duty cycle scheduling schemes for underwater wireless sensor networks. , 2018, , .		8
124	Error Control Based Energy Minimization for Cooperative Communication in WSN. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2014, 14, 55-64.	0.5	8
125	A novel superframe structure and optimal time slot allocation algorithm for IEEE 802.15.4–based Internet of things. International Journal of Distributed Sensor Networks, 2020, 16, 155014772098464.	1.3	8
126	COME: cost optimisation with multi-chaining for energy efficient communication in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2015, 20, 186.	0.3	7

#	Article	IF	CITATIONS
127	Securing cognitive radio enabled smart grid systems against cyber attacks. , 2015, , .		7
128	Secure edge computing: An architectural approach and industrial use case. Internet Technology Letters, 2018, 1, e68.	1.4	7
129	Predicted mobility based profitable relay selection in cooperative cellular network with mobile relays. Physical Communication, 2019, 37, 100808.	1.2	7
130	LiSA: A Lightweight and Secure Authentication Mechanism for Smart Metering Infrastructure. , 2019, , .		7
131	Multimodal Named Data Discovery With Interest Broadcast Suppression for Vehicular CPS. IEEE Transactions on Mobile Computing, 2021, 20, 1877-1891.	3.9	7
132	Self-organized e-Health Application Using IEEE 11703: An Experimental Approach. Procedia Computer Science, 2014, 32, 876-881.	1.2	6
133	BIRD. , 2018, , .		6
134	Efficient Data Broadcast Mitigation in Multisource Named-Content Discovery for Vehicular CPS. IEEE Communications Letters, 2019, 23, 1644-1647.	2.5	6
135	REMEDY: Receiver-Initiated MAC Based on Energy-Efficient Duty-Cycling in the IoUT. IEEE Access, 2019, 7, 105202-105211.	2.6	6
136	QoS aware cross layer paradigm for urban development applications in IoT. Wireless Networks, 2020, 26, 6203-6214.	2.0	6
137	Differentially Private Tripartite Intelligent Matching Against Inference Attacks in Ride-Sharing Services. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 22583-22595.	4.7	6
138	Hierarchical and hash-based naming scheme for vehicular information centric networks. , 2014, , .		5
139	Adaptive beaconing schemes in VANETs: Hybrid approach. , 2015, , .		5
140	An efficient SCH utilization scheme for IEEE 1609.4 multi-channel environments in VANETs. , 2016, , .		5
141	FBR: Fleet based video retrieval in 3G and 4G enabled Vehicular Ad Hoc Networks. , 2016, , .		5
142	Features Selection Model for Internet of E-Health Things Using Big Data. , 2017, , .		5
143	Enhanced Distance-Based Gossip Protocols for Wireless Sensor Networks. , 2019, , .		5
144	Modified VIKOR Based Distributed Clustering Scheme for Wireless Sensor Networks. , 2013, , .		4

#	Article	IF	CITATIONS
145	Reducing scanning latency in WiMAX enabled VANETs. , 2014, , .		4
146	You speak, we detect: Quantitative diagnosis of anomic and Wernicke's aphasia using digital signal processing techniques. , 2017, , .		4
147	Request Expectation Index Based Cache Replacement Algorithm for Streaming Content Delivery over ICN. Future Internet, 2017, 9, 83.	2.4	4
148	AdCaS: Adaptive Caching for Storage Space Analysis Using Content Centric Networking. , 2018, , .		4
149	Enabling critical content dissemination in vehicular named data networks. , 2018, , .		4
150	Secrecy Outage Analysis for Massive MIMO-Enabled Multi-Tier 5G Hybrid HetNets. , 2018, , .		4
151	Vehicular Networks in the Eyes of Future Internet Architectures. Advances in Wireless Technologies and Telecommunication Book Series, 2021, , 70-97.	0.3	4
152	Towards Pending Interest Table Management Solutions in Named Data Networking. Journal of Computational and Theoretical Nanoscience, 2019, 16, 4271-4279.	0.4	4
153	Quality of Experience for video streaming: A contemporary survey. , 2017, , .		3
154	IEEE Access Special Section Editorial: Future Networks: Architectures, Protocols, and Applications. IEEE Access, 2017, 5, 27831-27835.	2.6	3
155	Maximum Information Coverage in Named Data Vehicular Cyber-Physical Systems. , 2018, , .		3
156	A Detailed Simulation Study of the Push-Based Protocol for Critical Data Dissemination in Vehicular Named Data Networks. , 2019, , .		3
157	Towards Network Lifetime Maximization: Sink Mobility Aware Multihop Scalable Hybrid Energy Efficient Protocols for Terrestrial WSNs. International Journal of Distributed Sensor Networks, 2015, 2015, 1-16.	1.3	3
158	Influence of Backoff Period in Slotted CSMA/CA of IEEE 802.15.4. Lecture Notes in Computer Science, 2016, , 40-51.	1.0	3
159	Cyber-Physical Systems in Vehicular Communications. Advances in Wireless Technologies and Telecommunication Book Series, 2017, , 477-497.	0.3	3
160	Multimedia security in laboratory system based on cloud platform. Journal of Intelligent and Fuzzy Systems, 2016, 31, 2473-2481.	0.8	2
161	A comparative study of MAC protocols in brain-computer interface (BCI) applications. , 2017, , .		2
162	An Adaptive Multiple-Relay Selection in Vehicular Delay Tolerant Networks. , 2017, , .		2

#	Article	IF	CITATIONS
163	RIED-MAC: Receiver-Initiated MAC Based on Energy-Efficient Duty Cycling for UWSNs. , 2018, , .		2
164	Editorial on Wireless Networking Technologies for Smart Cities. Wireless Communications and Mobile Computing, 2018, 2018, 1-3.	0.8	2
165	Research on Efficient Data Forwarding in Vehicular Networks. Mobile Information Systems, 2019, 2019, 1-2.	0.4	2
166	Future Internet of Vehicles. Transactions on Emerging Telecommunications Technologies, 2020, 31, e3975.	2.6	2
167	Guest Editorial AI and 5G Empowered Internet of Medical Things. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3688-3690.	3.9	2
168	Energy aware error control in cooperative communication in wireless sensor networks. , 2013, , .		1
169	Performance Analysis of Bicycle-to-Pedestrian Safety Application using Bluetooth Low Energy. , 2017, , .		1
170	A multi-layer low-energy adaptive clustering hierarchy for wireless sensor network. , 2017, , .		1
171	Imminent Communication Technologies for Smart Communities: Part 1. , 2018, 56, 76-76.		1
172	TCP CUBIC: A Transport Protocol for Improving the Performance of TCP in Long Distance High Bandwidth Cyber-Physical Systems. , 2018, , .		1
173	Utilizing ICN Caching for IoT Big Data Management in WSN-Based Vehicular Networks. EAI/Springer Innovations in Communication and Computing, 2022, , 225-241.	0.9	1
174	Future Research and Scope. Springer Briefs in Electrical and Computer Engineering, 2016, , 59-67.	0.3	0
175	Design of 4G LTE testbed for implementing Green Cellular Algorithm. , 2017, , .		Ο
176	Network Mobility in a Locator/ID Separation Context. IEEE Access, 2017, 5, 27897-27904.	2.6	0
177	Properties, Principles, and Metrics in Transportation CPS. SpringerBriefs in Computer Science, 2017, , 51-63.	0.2	Ο
178	An Analysis of Content Sharing Hops for Dual-Structural Network Based on General Random Graph. , 2018, , .		0
179	Guest Editorial: Special Section on Advanced Collaborative Technologies for Artificial Intelligence of Things. IEEE Transactions on Industrial Informatics, 2021, , 1-1.	7.2	0
180	Cyber-Physical Systems in Vehicular Communications. , 2020, , 411-431.		0

Cyber-Physical Systems in Vehicular Communications. , 2020, , 411-431. 180