jean-François BriÃ"re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056780/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Recent advances in cooperative ion pairing in asymmetric organocatalysis. Chemical Society Reviews, 2012, 41, 1696-1707.	38.1	185
2	Synthetic and structural studies of NHC–Pt(dvtms) complexes and their application as alkene hydrosilylation catalysts (NHC=N-heterocyclic carbene, dvtms=divinyltetramethylsiloxane). Journal of Organometallic Chemistry, 2005, 690, 6156-6168.	1.8	106
3	Second generation N-heterocyclic carbene–Pt(0) complexes as efficient catalysts for the hydrosilylation of alkenes. Chemical Communications, 2005, , 3856.	4.1	90
4	Progress in Catalytic Asymmetric Protonation. European Journal of Organic Chemistry, 2014, 2014, 6103-6119.	2.4	90
5	Design of Sulfides with a Locked Conformation as Promoters of Catalytic and Asymmetric Sulfonium Ylide Epoxidation. Journal of Organic Chemistry, 2005, 70, 4166-4169.	3.2	83
6	Enantioselective Phaseâ€Transfer Catalysis: Synthesis of Pyrazolines. Angewandte Chemie - International Edition, 2010, 49, 7072-7075.	13.8	81
7	Straightforward Stereoselective Synthesis of Spiro-epoxyoxindoles. Organic Letters, 2007, 9, 1745-1748.	4.6	64
8	Organocatalysed decarboxylative protonation process from Meldrum's acid: enantioselective synthesis of isoxazolidinones. Chemical Communications, 2013, 49, 11569.	4.1	49
9	Chitosan: An Upgraded Polysaccharide Waste for Organocatalysis. European Journal of Organic Chemistry, 2015, 2015, 2559-2578.	2.4	49
10	Meldrum's Acid: A Useful Platform in Asymmetric Organocatalysis. ChemCatChem, 2016, 8, 1882-1890.	3.7	45
11	Enantioselective Phaseâ€Transfer Catalyzed αâ€Sulfanylation of Isoxazolidinâ€5â€ones: An Entry to β ^{2,2} â€Amino Acid Derivatives. Chemistry - A European Journal, 2016, 22, 15261-15264.	3.3	43
12	Intramolecular Photochemical Dioxenoneâ´'Alkene [2 + 2] Cycloadditions as an Approach to the Bicyclo[2.1.1]hexane Moiety of Solanoeclepin A. Journal of Organic Chemistry, 2001, 66, 233-242.	3.2	37
13	Regioselective reductions of various 3-aminosuccinimides; application to the synthesis of two heterocyclic systems. Tetrahedron, 1997, 53, 2075-2086.	1.9	36
14	Synthesis of the Right-Hand Substructure of Solanoeclepin A. European Journal of Organic Chemistry, 2001, 2371-2377.	2.4	36
15	TBD-organocatalysed synthesis of pyrazolines. Organic and Biomolecular Chemistry, 2009, 7, 3648.	2.8	36
16	Enantioselective synthesis of bio-relevant 3,5-diaryl pyrazolines. Organic and Biomolecular Chemistry, 2012, 10, 3946.	2.8	35
17	Organocatalysed multicomponent synthesis of pyrazolidinones: Meldrum's acid approach. Chemical Communications, 2014, 50, 10218.	4.1	35
18	Organocatalyzed Multicomponent Synthesis of Isoxazolidin-5-ones. Organic Letters, 2015, 17, 5408-5411.	4.6	31

#	Article	IF	CITATIONS
19	Developments in Meyers' Lactamization Methodology: En Route to Bi(hetero)aryl Structures with Defined Axial Chirality. Journal of Organic Chemistry, 2013, 78, 8191-8197.	3.2	30
20	Catalytic Enantioselective Syntheses of Isoxazolidin-5-ones. Synthesis, 2017, 49, 2117-2128.	2.3	29
21	A diastereoselective and concise synthesis of functionalised vinyl epoxides with a Morita–Baylis–Hillman backbone. Organic and Biomolecular Chemistry, 2006, 4, 3048-3051.	2.8	27
22	Domino Aza-Michael- <i>ih</i> -Diels–Alder Reaction to Various 3-Vinyl-1,2,4-triazines: Access to Polysubstituted Tetrahydro-1,6-naphthyridines. Organic Letters, 2017, 19, 4770-4773.	4.6	27
23	Intramolecular [2+2] photocycloadditions as an approach towards the bicyclo[2.1.1]hexane substructure of solanoeclepin A. Chemical Communications, 2000, , 1463-1464.	4.1	26
24	Highly Regio- and Diastereoselective Anionic [3 + 2] Cycloaddition under Phase Transfer Catalytic Conditions. Journal of Organic Chemistry, 2011, 76, 4194-4199.	3.2	26
25	Asymmetric Synthesis of Isoxazol-5-ones and Isoxazolidin-5-ones. Synthesis, 2021, 53, 107-122.	2.3	26
26	An efficient and rapid chalcogenide-Morita–Baylis–Hillman process promoted by TBDMSOTf and a thiolane. Tetrahedron Letters, 2006, 47, 3553-3556.	1.4	25
27	Organocatalyzed Synthesis of Isoxazolidinâ€5â€ones: The Meldrum's Acid Approach. Advanced Synthesis and Catalysis, 2013, 355, 2513-2517.	4.3	25
28	Construction of Isoxazolidinâ€5â€ones with a Tetrasubstituted Carbon Center: Enantioselective Conjugate Addition Mediated by Phaseâ€Transfer Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 1499-1509.	4.3	25
29	Enantioselective catalytic synthesis of α-aryl-α-SCF3-β2,2-amino acids. Organic and Biomolecular Chemistry, 2020, 18, 405-408.	2.8	25
30	Sequential Michael Addition and Enamine-Promoted Inverse Electron Demanding Diels–Alder Reaction upon 3-Vinyl-1,2,4-triazine Platforms. Organic Letters, 2015, 17, 3154-3157.	4.6	22
31	Studies towards the total synthesis of solahoeclepin A: synthesis and potato cyst nematode hatching activity of analogues containing the tetracyclic left-hand substructureElectronic supplementary information (ESI) available: further experimental details. See http://www.rsc.org/suppdata/p1/b2/b202020n/. Journal of the Chemical Society, Perkin Transactions 1,	1.3	21
32	2002., 1701-1710. Chalcogen Chiral Ylides for the Catalytic Asymmetric Epoxidation of Aldehydes: From Sulfur to Selenium and Tellurium. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 965-968.	1.6	18
33	A stereodivergent synthesis of β-hydroxy-α-methylene lactones via vinyl epoxides. Organic and Biomolecular Chemistry, 2008, 6, 1981.	2.8	17
34	Organocatalysed synthesis of isoxazolines initiated by a chemoselective oxa-Michael reaction of N-BocNHOH. Organic and Biomolecular Chemistry, 2014, 12, 1245.	2.8	17
35	<i>N</i> â€Alkoxyacrylamides in Domino Reactions: Catalytic and Stereoselective Access to δ‣actams. European Journal of Organic Chemistry, 2019, 2019, 7703-7710.	2.4	16
36	Synthesis of pyrazolines by a site isolated resin-bound reagents methodology. Organic and Biomolecular Chemistry, 2010, 8, 3287.	2.8	15

#	Article	IF	CITATIONS
37	Unique Reactivity of αâ€Substituted Electronâ€Deficient Allenes using Sulfinate Salts as Lewis Base Organocatalysts. Advanced Synthesis and Catalysis, 2017, 359, 96-106.	4.3	15
38	Stereocontrolled lithiation/trapping of chiral 2-alkylideneaziridines: investigation into the role of the aziridine nitrogen stereodynamics. Organic and Biomolecular Chemistry, 2014, 12, 8505-8511.	2.8	13
39	Modified multicomponent Biginelli–Atwal reaction towards a straightforward construction of 5,6-dihydropyrimidin-4-ones. RSC Advances, 2015, 5, 46267-46271.	3.6	13
40	Organocatalyzed Thiaâ€Michael Addition and Sequential Inverse Electron Demanding Dielsâ€Alder Reaction to 3â€Vinylâ€1,2,4―triazine Platforms. Advanced Synthesis and Catalysis, 2017, 359, 4106-4110.	4.3	12
41	Organocatalytic aza-Michael Reaction to 3-Vinyl-1,2,4-triazines as a Valuable Bifunctional Platform. Journal of Organic Chemistry, 2019, 84, 3702-3714.	3.2	12
42	Enantioselective Catalytic Transformations of Barbituric Acid Derivatives. Catalysts, 2019, 9, 131.	3.5	12
43	Insight in chitosan aerogels derivatives -Application in catalysis. Reactive and Functional Polymers, 2020, 146, 104393.	4.1	12
44	Developments of Asymmetric Synthesis Mediated by Chiral Sulfur Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1171-1182.	1.6	11
45	Scaffold hopping strategy toward original pyrazolines as selective CB2 receptor ligands. European Journal of Medicinal Chemistry, 2012, 58, 396-404.	5.5	11
46	C5â€Disubstituted Meldrum's Acid Derivatives as Platform for the Organocatalytic Synthesis of C3â€Alkylated Dihydrocoumarins. Advanced Synthesis and Catalysis, 2019, 361, 995-1000.	4.3	11
47	Design and synthesis of a heterocyclic amine receptor. Tetrahedron, 1996, 52, 10441-10454.	1.9	10
48	A Unique (3+2) Annulation Reaction between Meldrum's Acid and Nitrones: Mechanistic Insight by ESIâ€IMSâ€IMS and DFT Studies. Chemistry - A European Journal, 2018, 24, 4086-4093.	3.3	10
49	Sulfinateâ€Organocatalyzed (3+2) Annulation Reaction of Propargyl or Allenyl Sulfones with Activated Imines. European Journal of Organic Chemistry, 2018, 2018, 5069-5073.	2.4	10
50	Sulfinateâ€Organocatalyzed (3+2) Annulation of Allenyl Sulfones with 1,1â€Dicyano Olefins in the Presence of a Quaternary Ammonium Phase Transfer Agent. Advanced Synthesis and Catalysis, 2018, 360, 2696-2706.	4.3	9
51	Organocatalytic Multicomponent Synthesis of α/βâ€Đipeptide Derivatives. Chemistry - A European Journal, 2020, 26, 8541-8545.	3.3	9
52	Organocatalyzed Enantioselective Protonation. , 2011, , 67-106.		9
53	Synthesis of Fused Systems in the Isoquinoline Series: Oxazolo- and Pyrrolo[3,2-c]isoquinolines. Heterocycles, 2000, 52, 1371.	0.7	8
54	Organocatalytic Enantioselective Decarboxylative Protonation Reaction of Meldrum's Acid Derivatives under PTC Conditions. European Journal of Organic Chemistry, 2018, 2018, 1975-1983.	2.4	8

jean-François Brière

#	Article	IF	CITATIONS
55	Alkylidene Meldrum's Acids as Platforms for the Vinylogous Synthesis of Dihydropyranones. Angewandte Chemie - International Edition, 2021, 60, 11110-11114.	13.8	8
56	Scalable asymmetric synthesis of a key fragment of Bcl-2/Bcl-xL inhibitors. RSC Advances, 2014, 4, 39817-39821.	3.6	7
57	Synthesis of a Heterocyclic Amine and Acid Receptor. Tetrahedron, 2000, 56, 8679-8688.	1.9	6
58	Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts. Catalysts, 2021, 11, 1249.	3.5	6
59	A Meldrum's Acid Based Multicomponent Synthesis of <i>N</i> â€Fmocâ€isoxazolidinâ€5â€ones: Entry to <i>N</i> â€Fmocâ€Î²â€amino Acids. European Journal of Organic Chemistry, 2017, 2017, 3265-3273.	2.4	5
60	Auto Tandem Catalysis: Asymmetric Vinylogous Cycloaddition/Kinetic Resolution Sequence for the Enantioselective Synthesis of Spiroâ€Đihydropyranone from Benzylidene Meldrum's Acid. Advanced Synthesis and Catalysis, 2021, 363, 4452-4458.	4.3	5
61	Diastereoselective addition of redox active esters to azomethine imines by electrosynthesis. Chemical Communications, 2022, 58, 6100-6103.	4.1	5
62	Chiral Quaternary Ammonium Salts in Organocatalysis. , 2017, , 87-173.		4
63	Heterogeneous-phase Sonogashira cross-coupling reaction on COC surface for the grafting of biomolecules – Application to isatin. Colloids and Surfaces B: Biointerfaces, 2019, 181, 639-647.	5.0	4
64	Base-Assisted Intramolecular C–N Coupling Reaction from NH ₂ -Bound Cyclopalladated <scp>l</scp> -Phenylalanine to Indoline-2-carboxylic Acid. Organometallics, 2020, 39, 767-773.	2.3	3
65	Alkylidene Meldrum's Acids as Platforms for the Vinylogous Synthesis of Dihydropyranones. Angewandte Chemie, 2021, 133, 11210-11214.	2.0	3
66	Multicomponent Catalytic Enantioselective Synthesis of Isoxazolidinâ€5â€Ones. Advanced Synthesis and Catalysis, 2021, 363, 4447-4451.	4.3	3
67	Organocatalytic enantioselective synthesis of \hat{I}^2 -amino sulfonic acid derivatives. Chemical Communications, 2021, 57, 8348-8351.	4.1	2
68	The Catalytic Regio- and Stereoselective Synthesis of 1,6-Diazabicyclo[4.3.0]nonane-2,7-diones. Journal of Organic Chemistry, 2021, 86, 8600-8609.	3.2	2
69	Amineâ€Directed Palladiumâ€Catalyzed Câ~'H Halogenation of Phenylalanine Derivatives. Chemistry - A European Journal, 2021, 27, 13961-13965.	3.3	2
70	Chalcogen Chiral Ylides for the Catalytic Asymmetric Epoxidation of Aldehydes: From Sulfur to Selenium and Tellurium. ChemInform, 2005, 36, no.	0.0	1
71	Synthesis and Evaluation of Enantiopure 6-Thiabicyclo[3.2.1]octanes for Asymmetric Epoxidation of Benzaldehyde. Synlett, 2008, 2008, 1679-1683.	1.8	1
72	Concise synthesis of an enantiopure bicyclic pyrazinone as constrained peptidomimetic building block. Organic and Biomolecular Chemistry, 2012, 10, 2003.	2.8	1

#	Article	IF	CITATIONS
73	Second Generation N-Heterocyclic Carbene—Pt(0) Complexes as Efficient Catalysts for the Hydrosilylation of Alkenes ChemInform, 2005, 36, no.	0.0	0
74	Functions Incorporating Two Chalcogens Other Than Oxygen. , 2005, , 271-322.		0
75	Amineâ€Directed Palladium atalyzed Câ^'H Halogenation of Phenylalanine Derivatives. Chemistry - A European Journal, 2021, 27, 13897-13898.	3.3	0
76	Industrial-Academic collaboration: The key for C-H bond activation. , 2020, , .		0