Rex Pratt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056689/publications.pdf

Version: 2024-02-01

233421 159585 2,398 45 87 30 citations h-index g-index papers 87 87 87 1400 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Crystallographic Structure of a Phosphonate Derivative of the Enterobacter cloacae P99 Cephalosporinase: Mechanistic Interpretation of a .betaLactamase Transition-State Analog. Biochemistry, 1994, 33, 6762-6772.	2.5	171
2	Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Science, 1989, 246, 917-919.	12.6	132
3	Kinetics and mechanism of the serine .betalactamase catalyzed hydrolysis of depsipeptides. Biochemistry, 1987, 26, 3385-3395.	2.5	88
4	Structures of Two Kinetic Intermediates Reveal Species Specificity of Penicillin-binding Proteins. Journal of Molecular Biology, 2002, 322, 111-122.	4.2	83
5	Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins). Cellular and Molecular Life Sciences, 2008, 65, 2138-2155.	5.4	76
6	beta-Lactamase-catalyzed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino acid acceptors Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1302-1306.	7.1	65
7	Effectiveness of Tetrahedral Adducts as Transition-State Analogs and Inhibitors of the Class C \hat{l}^2 -Lactamase of Enterobacter cloacae P99. Journal of the American Chemical Society, 1997, 119, 1529-1538.	13.7	59
8	The Crystal Structure of Phosphonate-Inhibited d-Ala-d-Ala Peptidase Reveals an Analogue of a Tetrahedral Transition State,. Biochemistry, 2003, 42, 1199-1208.	2.5	57
9	Crystal Structures of Complexes between the R61 DD-peptidase and Peptidoglycan-mimetic β-Lactams: A Non-covalent Complex with a "Perfect Penicillin― Journal of Molecular Biology, 2005, 345, 521-533.	4.2	55
10	Mechanism of inhibition of the class C .betalactamase of Enterobacter cloacae P99 by phosphonate monoesters. Biochemistry, 1992, 31, 5869-5878.	2.5	54
11	Reaction of soluble penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus with \hat{l}^2 -lactams and acyclic substrates: kinetics in homogeneous solution. Biochemical Journal, 1998, 332, 755-761.	3.7	51
12	Crystal Structure of the Bacillus subtilis Penicillin-binding Protein 4a, and its Complex with a Peptidoglycan Mimetic Peptide. Journal of Molecular Biology, 2007, 371, 528-539.	4.2	50
13	Functional evolution of the serine \hat{I}^2 -lactamase active site. Perkin Transactions II RSC, 2002, , 851-861.	1.1	46
14	Crystal Structures of Covalent Complexes of \hat{I}^2 -Lactam Antibiotics with <i>Escherichia coli</i> Penicillin-Binding Protein 5: Toward an Understanding of Antibiotic Specificity. Biochemistry, 2010, 49, 8094-8104.	2.5	46
15	Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: Phosphonate monoester inhibitors of .betalactamase. Biochemistry, 1994, 33, 116-125.	2.5	45
16	\hat{l}^2 -Ketophosphonates as \hat{l}^2 -lactamase inhibitors: Intramolecular cooperativity between the hydrophobic subsites of a class D \hat{l}^2 -lactamase. Bioorganic and Medicinal Chemistry, 2008, 16, 6987-6994.	3.0	45
17	N-(Phenylacetyl)glycyl-D-aziridine-2-carboxylate, an acylic amide substrate of .betalactamases: importance of the shape of the substrate in .betalactamase evolution. Biochemistry, 1991, 30, 3640-3649.	2.5	43
18	Crystal Structures of Complexes of Bacterial dd-Peptidases with Peptidoglycan-Mimetic Ligands: The Substrate Specificity Puzzle. Journal of Molecular Biology, 2008, 381, 383-393.	4.2	40

#	Article	lF	Citations
19	Effect of the 3′-leaving group on turnover of cephem antibiotics by a class C <i>i²(i>-lactamase. Biochemical Journal, 1989, 259, 255-260.</i>	3.7	39
20	Kinetics and Mechanism of the Hydrolysis of Depsipeptides Catalyzed by the \hat{l}^2 -Lactamase of Enterobacter cloacaeP99 \hat{a} €. Biochemistry, 1996, 35, 3595-3603.	2.5	39
21	Synthesis and Reactivity with β-Lactamases of "Penicillin-like―Cyclic Depsipeptides. Journal of Organic Chemistry, 1999, 64, 713-720.	3.2	39
22	Reactivity of Penicillin-Binding Proteins with Peptidoglycan-Mimetic β-Lactams: What's Wrong with These Enzymes?â€. Biochemistry, 2006, 45, 15873-15883.	2.5	39
23	Unexpected Tricovalent Binding Mode of Boronic Acids within the Active Site of a Penicillin-Binding Protein. Journal of the American Chemical Society, 2011, 133, 10839-10848.	13.7	37
24	Dipeptide Binding to the Extended Active Site of the Streptomyces R61 d-Alanyl-d-alanine-peptidase: The Path to a Specific Substrateâ€. Biochemistry, 2000, 39, 12200-12209.	2.5	36
25	The Perfect Penicillin? Inhibition of a Bacterial DD-Peptidase by Peptidoglycan-Mimetic \hat{l}^2 -Lactams. Journal of the American Chemical Society, 2004, 126, 8122-8123.	13.7	36
26	Structural Relationship between the Active Sites of \hat{l}^2 -Lactam-Recognizing and Amidase Signature Enzymes: Convergent Evolution?. Biochemistry, 2010, 49, 9688-9697.	2.5	36
27	On the Importance of a Methyl Group in β-Lactamase Evolution: Free Energy Profiles and Molecular Modelingâ€. Biochemistry, 1999, 38, 10499-10510.	2.5	35
28	<i>O</i> -Aryloxycarbonyl Hydroxamates:  New β-Lactamase Inhibitors That Cross-Link the Active Site. Journal of the American Chemical Society, 2007, 129, 9548-9549.	13.7	35
29	β-Secondary and Solvent Deuterium Kinetic Isotope Effects on β-Lactamase Catalysisâ€. Biochemistry, 1996, 35, 3604-3613.	2.5	34
30	The synthesis and evaluation of benzofuranones as \hat{l}^2 -Lactamase substrates. Bioorganic and Medicinal Chemistry, 2001, 9, 1175-1183.	3.0	33
31	Relative specificities of a series of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -lactam-recognizing enzymes towards the side-chains of penicillins and of acyclic thioldepsipeptides. Biochemical Journal, 1994, 302, 851-856.	3.7	31
32	Î ² -Lactamases: Why and How. Journal of Medicinal Chemistry, 2016, 59, 8207-8220.	6.4	31
33	Approaches to the simultaneous inactivation of metallo- and serine- \hat{l}^2 -lactamases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1618-1622.	2.2	29
34	Crystal Structure of a Complex between the <i>Actinomadura</i> R39 <scp>dd</scp> -Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry, 2010, 49, 6411-6419.	2.5	29
35	β-Secondary and Solvent Deuterium Kinetic Isotope Effects on Catalysis by the Streptomyces R61 DD-Peptidase:  Comparisons with a Structurally Similar Class C β-Lactamase. Biochemistry, 1999, 38, 1469-1477.	2.5	26
36	Structure-activity studies of the inhibition of serine \hat{l}^2 -lactamases by phosphonate monoesters. Bioorganic and Medicinal Chemistry, 1997, 5, 1783-1788.	3.0	25

#	Article	IF	Citations
37	Accumulation of acyl-enzyme intermediates during turnover of penicillins by the class A $\langle i \rangle \hat{l}^2 \langle i \rangle$ -lactamase of $\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$ PC1. Biochemical Journal, 1988, 254, 919-922.	3.7	24
38	Transpeptidation Reactions of a Specific Substrate Catalyzed by the Streptomyces R61 dd-Peptidase: Characterization of a Chromogenic Substrate and Acyl Acceptor Design. Biochemistry, 2005, 44, 9971-9979.	2.5	24
39	Kinetics and Mechanism of Inhibition of a Serine \hat{l}^2 -Lactamase by O-Aryloxycarbonyl Hydroxamates. Biochemistry, 2008, 47, 12037-12046.	2.5	23
40	Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry, 2012, 51, 2804-2811.	2.5	23
41	Mechanism of Reaction of Acyl Phosph(on)ates with the β-Lactamase ofEnterobacter cloacaeP99â€. Biochemistry, 2001, 40, 4610-4621.	2.5	22
42	Inhibition of Serine \hat{I}^2 -Lactamases by Acyl Phosph(on)ates: \hat{A} A New Source of Inert Acyl [and Phosphyl] Enzymes. Journal of the American Chemical Society, 1998, 120, 4264-4268.	13.7	21
43	Synthesis and Evaluation of Ketophosph(on)ates as β-Lactamase Inhibitors. Journal of Organic Chemistry, 2006, 71, 4778-4785.	3.2	21
44	Substrate Specificity of Low-Molecular Mass Bacterial <scp>dd</scp> -Peptidases. Biochemistry, 2011, 50, 10091-10101.	2.5	21
45	A Lysine-Targeted Affinity Label for Serine- \hat{l}^2 -Lactamase Also Covalently Modifies New Delhi Metallo- \hat{l}^2 -lactamase-1 (NDM-1). Biochemistry, 2019, 58, 2834-2843.	2.5	21
46	Interactions of cephalosporins with the <i>Streptomyces</i> R61 <scp>dd</scp> -transpeptidase/carboxypeptidase. Influence of the 3′-substituent. Biochemical Journal, 1986, 238, 309-312.	3.7	20
47	Inhibition of Class D \hat{I}^2 -Lactamases by Acyl Phosphates and Phosphonates. Antimicrobial Agents and Chemotherapy, 2005, 49, 4410-4412.	3.2	20
48	4-Quinolones as Noncovalent Inhibitors of High Molecular Mass Penicillin-Binding Proteins. ACS Medicinal Chemistry Letters, 2012, 3, 592-595.	2.8	20
49	Inhibition of Class D β-Lactamases by Diaroyl Phosphatesâ€. Biochemistry, 2005, 44, 16121-16129.	2.5	17
50	Transpeptidation Reactions of a Specific Substrate Catalyzed by the Streptomyces R61 dd-Peptidase:  The Structural Basis of Acyl Acceptor Specificity. Biochemistry, 2005, 44, 9961-9970.	2.5	17
51	Synthesis and \hat{l}^2 -lactamase reactivity of \hat{l}_\pm -substituted phenaceturates. Bioorganic and Medicinal Chemistry, 2006, 14, 7023-7033.	3.0	15
52	Synthesis, Hydrolysis, and Evaluation of 3-Acylamino-3,4-dihydro-2-oxo-2H-1,3-benzoxazinecarboxylic Acids and Linear Azadepsipeptides as Potential Substrates/Inhibitors of \hat{I}^2 -Lactam-Recognizing Enzymes. European Journal of Organic Chemistry, 2001, 2001, 141-149.	2.4	14
53	Reactions of Peptidoglycan-Mimetic \hat{I}^2 -Lactams with Penicillin-Binding Proteins <i>iin Vivo</i> and in Membranes. ACS Chemical Biology, 2007, 2, 620-624.	3.4	14
54	Kinetics of Action of a Two-Stage Pro-Inhibitor of Serine \hat{I}^2 -Lactamases. Biochemistry, 2013, 52, 7060-7070.	2.5	14

#	Article	IF	CITATIONS
55	Nucleophilic re-activation of the PC1 \hat{l}^2 -lactamase of <i>Staphylococcus aureus</i> and of the <scp>dd</scp> -peptidase of <i>Streptomyces</i> R61 after their inactivation by cephalosporins and cephamycins. Biochemical Journal, 1987, 246, 651-658.	3.7	13
56	Salicyloyl Cyclic Phosphate, a "Penicillin-Like―Inhibitor of β-Lactamases. Journal of the American Chemical Society, 1998, 120, 3004-3006.	13.7	13
57	Kinetics of Turnover of Cefotaxime by theEnterobacter cloacaeP99 and GCl β-Lactamases: Two Free Enzyme Forms of the P99 β-Lactamase Detected by a Combination of Pre- and Post-Steady State Kineticsâ€. Biochemistry, 2004, 43, 2664-2672.	2.5	13
58	Synthesis and Evaluation of New Substrate Analogues of Streptomyces R61dd-Peptidase: Â Dissection of a Specific Ligand. Journal of Organic Chemistry, 2004, 69, 7472-7478.	3.2	12
59	Inhibition of Class A and C \hat{l}^2 -Lactamases by Diaroyl Phosphates. Biochemistry, 2009, 48, 8285-8292.	2.5	12
60	Covalent Inhibition of Serine \hat{l}^2 -Lactamases by Novel Hydroxamic Acid Derivatives. Biochemistry, 2013, 52, 3712-3720.	2.5	12
61	Elusive structural changes of New Delhi metallo- \hat{l}^2 -lactamase revealed by ultraviolet photodissociation mass spectrometry. Chemical Science, 2020, 11, 8999-9010.	7.4	12
62	Thed-Methyl Group in β-Lactamase Evolution: Evidence from the Y221G and GC1 Mutants of the Class C β-Lactamase ofEnterobacter cloacaeP99â€. Biochemistry, 2005, 44, 7543-7552.	2.5	11
63	A New Covalent Inhibitor of Class C \hat{l}^2 -Lactamases Reveals Extended Active Site Specificity. Biochemistry, 2015, 54, 7375-7384.	2.5	11
64	Inverse Acyl Phosph(on)ates: Substrates or Inhibitors of \hat{I}^2 -Lactam-Recognizing Enzymes?. Bioorganic Chemistry, 2001, 29, 271-281.	4.1	10
65	Kinetic and structural consequences of the leaving group in substrates of a class C \hat{l}^2 -lactamase. Bioorganic and Medicinal Chemistry, 2004, 12, 1537-1542.	3.0	10
66	Kinetics of Reactions of the <i>Actinomadura</i> R39 <scp>dd</scp> -Peptidase with Specific Substrates. Biochemistry, 2011, 50, 376-387.	2.5	9
67	8-Hydroxypenillic Acid from 6-Aminopenicillanic Acid:  A New Reaction Catalyzed by a Class C β-Lactamase. Journal of the American Chemical Society, 1996, 118, 8207-8212.	13.7	8
68	New Substrates for β-Lactam-Recognizing Enzymes: Aryl Malonamatesâ€. Biochemistry, 2003, 42, 6719-6725.	2.5	8
69	Substituted aryl malonamates as new serine β-lactamase substrates: Structure–activity studies. Bioorganic and Medicinal Chemistry, 2010, 18, 282-291.	3.0	8
70	Crossover inhibition as an indicator of convergent evolution of enzyme mechanisms: A βâ€lactamase and a Nâ€terminal nucleophile hydrolase. FEBS Letters, 2012, 586, 4186-4189.	2.8	8
71	Inhibition of <scp>dd</scp> -Peptidases by a Specific Trifluoroketone: Crystal Structure of a Complex with the <i>Actinomadura</i> R39 <scp>dd</scp> -Peptidase. Biochemistry, 2013, 52, 2128-2138.	2.5	8
72	Deacylation Transition States of a Bacterial DD-Peptidaseâ€. Biochemistry, 2006, 45, 13074-13082.	2.5	7

#	Article	IF	Citations
73	Dual Substrate Specificity ofBacillus subtilisPBP4a. Biochemistry, 2013, 52, 2627-2637.	2.5	6
74	A "cephalosporin-like―cyclic depsipeptide: Synthesis and reaction with ß-lactam-recognizing enzymes. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 341-346.	2.2	5
75	Benzopyranones with retro-amide side chains as (inhibitory) \hat{l}^2 -lactamase substrates. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5117-5120.	2.2	5
76	Synthesis and reactivity with \hat{I}^2 -lactamases of a monobactam bearing a retro-amide side chain. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 869-871.	2.2	5
77	Neutral \hat{I}^2 -Lactams Inactivate High Molecular Mass Penicillin-Binding Proteins of Class B1, Including PBP2a of MRSA. ACS Medicinal Chemistry Letters, 2014, 5, 154-157.	2.8	5
78	Effect of side-chain amide thionation on turnover of \hat{l}^2 -lactam substrates by \hat{l}^2 -lactamases. Further evidence on the question of side-chain hydrogen-bonding in catalysis. Biochemical Journal, 1992, 286, 857-862.	3.7	4
79	Intramolecular Cooperativity in the Reaction of Diacyl Phosphates with Serine \hat{I}^2 -Lactamases. Biochemistry, 2009, 48, 8293-8298.	2.5	4
80	Penicillin acylase and O-aryloxycarbonyl hydroxamates: Two acyl-enzymes, one leading to hydrolysis, the other to inactivation. Archives of Biochemistry and Biophysics, 2017, 614, 65-71.	3.0	4
81	Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coliPenicillin-Binding Protein 5. Biochemistry, 2016, 55, 4065-4076.	2.5	2
82	Kinetic Evidence for a Second Ligand Binding Site on <i>Streptococcus pneumoniae</i> Penicillin-Binding Protein 2x. Biochemistry, 2018, 57, 1758-1766.	2.5	2
83	Specificity of extended O-aryloxycarbonyl hydroxamates as inhibitors of a class C \hat{l}^2 -lactamase. Bioorganic and Medicinal Chemistry, 2019, 27, 1430-1436.	3.0	2
84	Detection of an enzyme isomechanism by means of the kinetics of covalent inhibition. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140681.	2.3	2
85	Serendipitous Discovery of \hat{l} ±-Hydroxyalkyl Esters as \hat{l} 2-Lactamase Substrates. Biochemistry, 2010, 49, 10496-10506.	2.5	1
86	Kinetics and stereochemistry of hydrolysis of an N-(phenylacetyl)-α-hydroxyglycine ester catalyzed by serine β-lactamases and dd-peptidases. Organic and Biomolecular Chemistry, 2012, 10, 7356.	2.8	0
87	Specificity and mechanism of mandelamide hydrolase catalysis. Archives of Biochemistry and Biophysics, 2017, 618, 23-31.	3.0	0