
Jason A Greenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions. IScience, 2022, 25, 103850.	1.9	13
2	Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type–dependent effects of disease-risk variants. Science Immunology, 2022, 7, eabm2508.	5.6	32
3	Towards the prediction of non-peptidic epitopes. PLoS Computational Biology, 2022, 18, e1009151.	1.5	2
4	Developmentally distinct CD4 ⁺ T _{reg} lineages shape the CD8 ⁺ T cell response to acute <i>Listeria</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113329119.	3.3	4
5	Targeting the tumor mutanome for personalized vaccination in a TMB low non-small cell lung cancer. , 2022, 10, e003821.		12
6	Distinguishing cell–cell complexes from dual lineage cells using singleâ€cell transcriptomics is not trivial. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 547-551.	1.1	0
7	Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 2022, 7, 23771-23781.	1.6	6
8	A comprehensive analysis of the IEDB MHC class-I automated benchmark. Briefings in Bioinformatics, 2022, 23, .	3.2	2
9	Comprehensive analysis of TÂcell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Reports Medicine, 2021, 2, 100204.	3.3	437
10	Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nature Communications, 2021, 12, 1446.	5.8	21
11	TCRMatch: Predicting T-Cell Receptor Specificity Based on Sequence Similarity to Previously Characterized Receptors. Frontiers in Immunology, 2021, 12, 640725.	2.2	64
12	A phase 1b study of personalized neoantigen vaccine plus pembrolizumab in adults with advanced cancer Journal of Clinical Oncology, 2021, 39, 2615-2615.	0.8	4
13	Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, 183, 996-1012.e19.	13.5	1,494
14	Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020, 370, 89-94.	6.0	1,036
15	TLR9 Sensing of Self-DNA Controls Cell-Mediated Immunity to Listeria Infection via Rapid Conversion of Conventional CD4+ T Cells to Treg. Cell Reports, 2020, 31, 107249.	2.9	9
16	A behindâ€ŧheâ€scenes tour of the IEDB curation process: an optimized process empirically integrating automation and human curation efforts. Immunology, 2020, 161, 139-147.	2.0	6
17	Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020, 181, 1489-1501.e15.	13.5	3,220
18	Identifying inaccuracies in gene expression estimates from unstranded RNA-seq data. Scientific Reports, 2019, 9, 16342.	1.6	9

JASON A GREENBAUM

#	Article	IF	CITATIONS
19	IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic Acids Research, 2019, 47, W502-W506.	6.5	247
20	Circulating T cell-monocyte complexes are markers of immune perturbations. ELife, 2019, 8, .	2.8	67
21	Development of Asthma in Inner-City Children: Possible Roles of MAIT Cells and Variation in the Home Environment. Journal of Immunology, 2018, 200, 1995-2003.	0.4	38
22	Improved methods for predicting peptide binding affinity to <scp>MHC</scp> class <scp>II</scp> molecules. Immunology, 2018, 154, 394-406.	2.0	629
23	Transcriptomic Analysis of CD4+ T Cells Reveals Novel Immune Signatures of Latent Tuberculosis. Journal of Immunology, 2018, 200, 3283-3290.	0.4	43
24	Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell, 2018, 175, 1701-1715.e16.	13.5	588
25	Predicting T cell recognition of MHC class I restricted neoepitopes. Oncolmmunology, 2018, 7, e1492508.	2.1	82
26	Response to Comment on "Development of Asthma in Inner-City Children: Possible Roles of MAIT Cells and Variation in the Home Environment― Journal of Immunology, 2018, 200, 3317-3318.	0.4	3
27	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.	2.6	49
28	Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nature Communications, 2017, 8, 1473.	5.8	208
29	Immunoproteomic analysis of house dust mite antigens reveals distinct classes of dominant T cell antigens according to function and serological reactivity. Clinical and Experimental Allergy, 2017, 47, 577-592.	1.4	26
30	Tâ€cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome. Immunology, 2016, 148, 34-39.	2.0	31
31	Immunodominance in allergic T-cell reactivity to Japanese cedar in different geographic cohorts. Annals of Allergy, Asthma and Immunology, 2016, 117, 680-689.e1.	0.5	14
32	T-cell epitope conservation across allergen species is a major determinant of immunogenicity. Journal of Allergy and Clinical Immunology, 2016, 138, 571-578.e7.	1.5	40
33	Immunological consequences of intragenus conservation of <i>Mycobacterium tuberculosis</i> T-cell epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E147-55.	3.3	69
34	Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics, 2015, 31, 2174-2181.	1.8	127
35	Development and validation of a sample sparing strategy for HLA typing utilizing next generation sequencing. Human Immunology, 2015, 76, 917-922.	1.2	11
36	IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nature Communications, 2015, 6, 7055.	5.8	103

JASON A GREENBAUM

#	Article	IF	CITATIONS
37	Dengue Virus Evolution under a Host-Targeted Antiviral. Journal of Virology, 2015, 89, 5592-5601.	1.5	49
38	The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 2015, 43, D405-D412.	6.5	1,014
39	Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2046-53.	3.3	524
40	Memory T Cells in Latent Mycobacterium tuberculosis Infection Are Directed against Three Antigenic Islands and Largely Contained in a CXCR3+CCR6+ Th1 Subset. PLoS Pathogens, 2013, 9, e1003130.	2.1	258
41	Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLoS Computational Biology, 2013, 9, e1003266.	1.5	636
42	Immune epitope database analysis resource. Nucleic Acids Research, 2012, 40, W525-W530.	6.5	446
43	Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics, 2011, 63, 325-335.	1.2	351
44	TiArA: A Virtual Appliance for the Analysis of Tiling Array Data. PLoS ONE, 2010, 5, e9993.	1.1	0
45	Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20365-20370.	3.3	298
46	Reply to Satheshkumar and Moss: Poxvirus transcriptome analysis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E63-E64.	3.3	4
47	Kinetic Analysis of a Complete Poxvirus Transcriptome Reveals a Novel Class of Genes. FASEB Journal, 2008, 22, .	0.2	0
48	Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. Journal of Molecular Recognition, 2007, 20, 75-82.	1.1	209
49	Overcoming the Ontology Enrichment Bottleneck with Quick Term Templates. Nature Precedings, 0, , .	0.1	6